

NETAŞ NCS6742G N4

Rack Server

Hardware Description

Version: R1.8

NETAŞ TELEKOMÜNİKASYON A.Ş
Yenisehir Mahallesi Osmanli Bulvari Aeropark Sitesi
B Blok No:11B İç Kapı No:40
Postcode: 34912
Tel: +90 (216) 522 20 00
URL: <https://destek.netas.com.tr>
E-mail: info@netas.com.tr

LEGAL INFORMATION

Copyright 2025 NETAŞ CORPORATION.

The contents of this document are protected by copyright laws and international treaties. Any reproduction or distribution of this document or any portion of this document, in any form by any means, without the prior written consent of NETAŞ CORPORATION is prohibited. Additionally, the contents of this document are protected by contractual confidentiality obligations.

All company, brand and product names are trade or service marks, or registered trade or service marks, of NETAŞ CORPORATION or of their respective owners.

This document is provided as is, and all express, implied, or statutory warranties, representations or conditions are disclaimed, including without limitation any implied warranty of merchantability, fitness for a particular purpose, title or non-infringement. NETAŞ CORPORATION and its licensors shall not be liable for damages resulting from the use of or reliance on the information contained herein.

NETAŞ CORPORATION or its licensors may have current or pending intellectual property rights or applications covering the subject matter of this document. Except as expressly provided in any written license between NETAŞ CORPORATION and its licensee, the user of this document shall not acquire any license to the subject matter herein.

NETAŞ CORPORATION reserves the right to upgrade or make technical change to this product without further notice. Users may visit the NETAŞ technical support website <https://destek.netas.com.tr> to inquire for related information. The ultimate right to interpret this product resides in NETAŞ CORPORATION.

Statement on the Use of Third-Party Embedded Software:

If third-party embedded software such as Oracle, Sybase/SAP, Veritas, Microsoft, VMware, and Redhat is delivered together with this product of NETAŞ, the embedded software must be used as only a component of this product. If this product is discarded, the licenses for the embedded software must be void either and must not be transferred. NETAŞ will provide technical support for the embedded software of this product.

Revision History

Revision No.	Revision Date	Revision Reason
R1.8	2025-10-16	Updated "1.2.2 Switch Boards".
R1.7	2025-06-30	Updated "1.2.2 Switch Boards".
R1.6	2025-05-31	Updated "9.3 Switch Boards".
R1.5	2025-03-31	Updated "6.2 PCIe Card Slots and Descriptions".
R1.4	2025-01-10	<ul style="list-style-type: none">Added " 1 Product Structure".Updated "5.1 OCP NIC".

Revision No.	Revision Date	Revision Reason
		<ul style="list-style-type: none">• Updated "5.2 PCIe NIC".
R1.3	2024-11-26	Updated "4.2 PCIe NIC".
R1.2	2024-07-29	Added "9 Cables".
R1.1	2024-06-21	Updated "4.2 PCIe NIC".
R1.0	2023-12-11	First edition.

Serial Number: SJ-20231204193201-002

Publishing Date: 2025-10-16 (R1.8)

Contents

1 Product Structure	1
1.1 Physical Structure	1
1.2 Logical Structure	2
1.2.1 Mainboard	2
1.2.2 Switch Boards	4
2 CPU	21
3 DIMM	23
3.1 DIMM Label	23
3.2 DIMM Compatibility Rules	24
3.3 DIMM Installation Guidelines	25
3.4 DIMM Slot Positions	25
3.5 Recommended DIMM Configuration	27
3.6 Memory Protection Technologies	28
4 Storage	30
4.1 Hard Disk Slot	30
4.2 Hard Disk Indicator	32
4.3 RAID Controller Card	33
5 Network	34
5.1 OCP NIC	34
5.2 PCIe NIC	36
6 I/O Expansion	38
6.1 PCIe Card	38
6.2 PCIe Card Slots and Descriptions	38
7 Power Module	42
8 Fan Unit	43
9 Boards	46
9.1 I/O Card	46
9.2 Mainboard	47
9.3 Switch Boards	51
9.3.1 SWP65N40A	52
9.3.2 SW6505P5A	53
9.3.3 SWP65N41A	55
9.3.4 SW6505PT4A	57

9.4 Disk Backplane	59
10 Cables	63
10.1 Power Cables	63
10.1.1 AC Power Cable with a Three-Flat-Pin Male Plug.....	63
10.1.2 AC Power Cable with Pre-Insulated Tubular Terminals.....	64
10.1.3 HVDC Power Cable.....	65
10.1.4 -48 V DC Power Cable.....	66
10.2 Straight-Through Cable	67
10.3 Serial Cable	68
10.4 VGA Cable	69
11 Anti-Intrusion Sensor	72
Glossary.....	73

About This Manual

Purpose

This manual describes the hardware configurations of the NCS6742G N4 rack server so that you can learn about detailed information about the server's components including the [CPUs](#), [DIMM](#)s, storage, network, [I/O](#) expansion, power modules and fan units.

Intended Audience

This manual is intended for:

- Network planning engineers
- Hardware installation engineers
- On-site maintenance engineers

What Is in This Manual

This manual contains the following chapters:

Chapter 1, Product Structure	Describes the physical structure and logical structure of the NCS6742G N4.
Chapter 2, CPU	Describes the positions of CPUs in the NCS6742G N4 and the recommended CPU configurations.
Chapter 3, DIMM	Describes the DIMM slots in the NCS6742G N4 and the supported DIMM configurations.
Chapter 4, Storage	Describes the hard disk slots of the NCS6742G N4 and the supported hard disk configurations.
Chapter 5, Network	Describes the positions of the onboard NIC and OCP card in the NCS6742G N4.
Chapter 6, I/O Expansion	Describes the PCIe slots of the NCS6742G N4 and the supported PCIe card configurations.
Chapter 7, Power Module	Describes the positions of power modules in the NCS6742G N4 and the supported power module configurations.
Chapter 8, Fan Unit	Describes the positions of fan units in the NCS6742G N4 and the supported fan unit configurations.
Chapter 9, Boards	Describes the configurations of the mainboard and hard disk backplanes in the NCS6742G N4.

Chapter 10, Cables	Describes the functions, structures, and usage of cables used by the NCS6742G N4.
Chapter 11, Anti-Intrusion Sensor	Describes the functions and position of the anti-intrusion sensor in the NCS6742G N4 server.

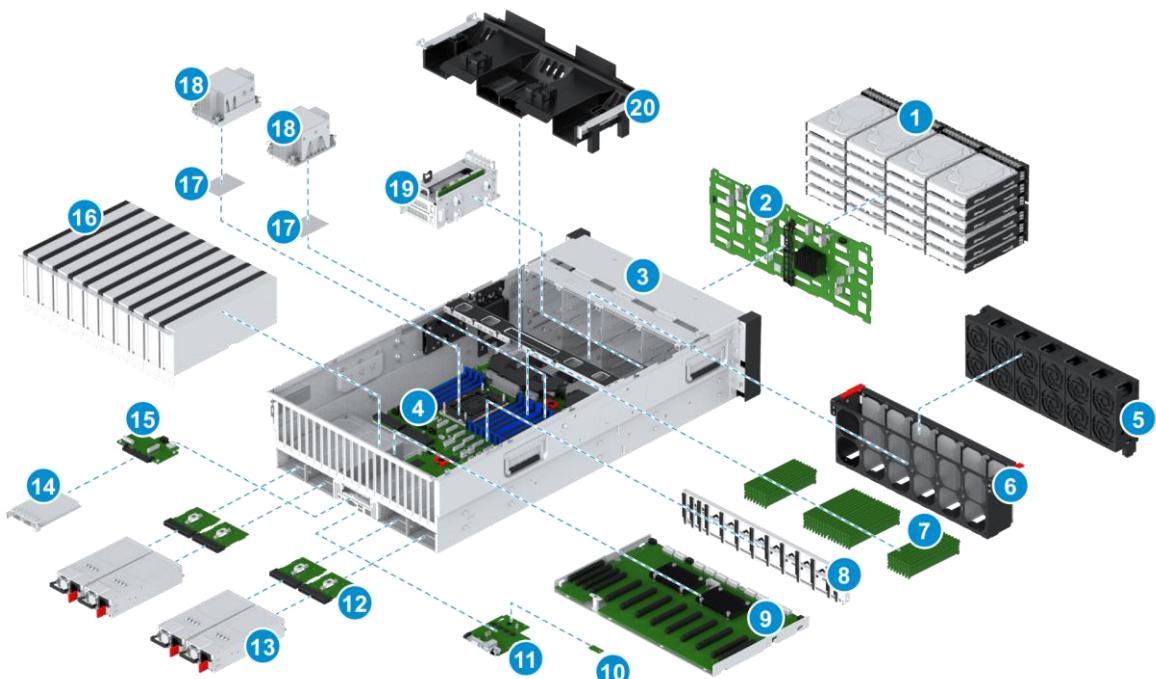
Conventions

This manual uses the following conventions:

	<p>Danger: indicates an imminently hazardous situation. Failure to comply will result in death or serious personal injury.</p> <p>Warning: indicates a potentially hazardous situation. Failure to comply can result in death or serious personal injury.</p> <p>Caution: indicates a potentially hazardous situation. Failure to comply can result in moderate or minor personal injury.</p>
	<p>Notice: indicates equipment or environment safety information. Failure to comply can result in equipment damage, data loss, equipment performance degradation, environmental contamination, or other unpredictable results.</p> <p>Failure to comply will not result in personal injury.</p>
	<p>Note: provides additional information about a topic.</p>

Chapter 1

Product Structure

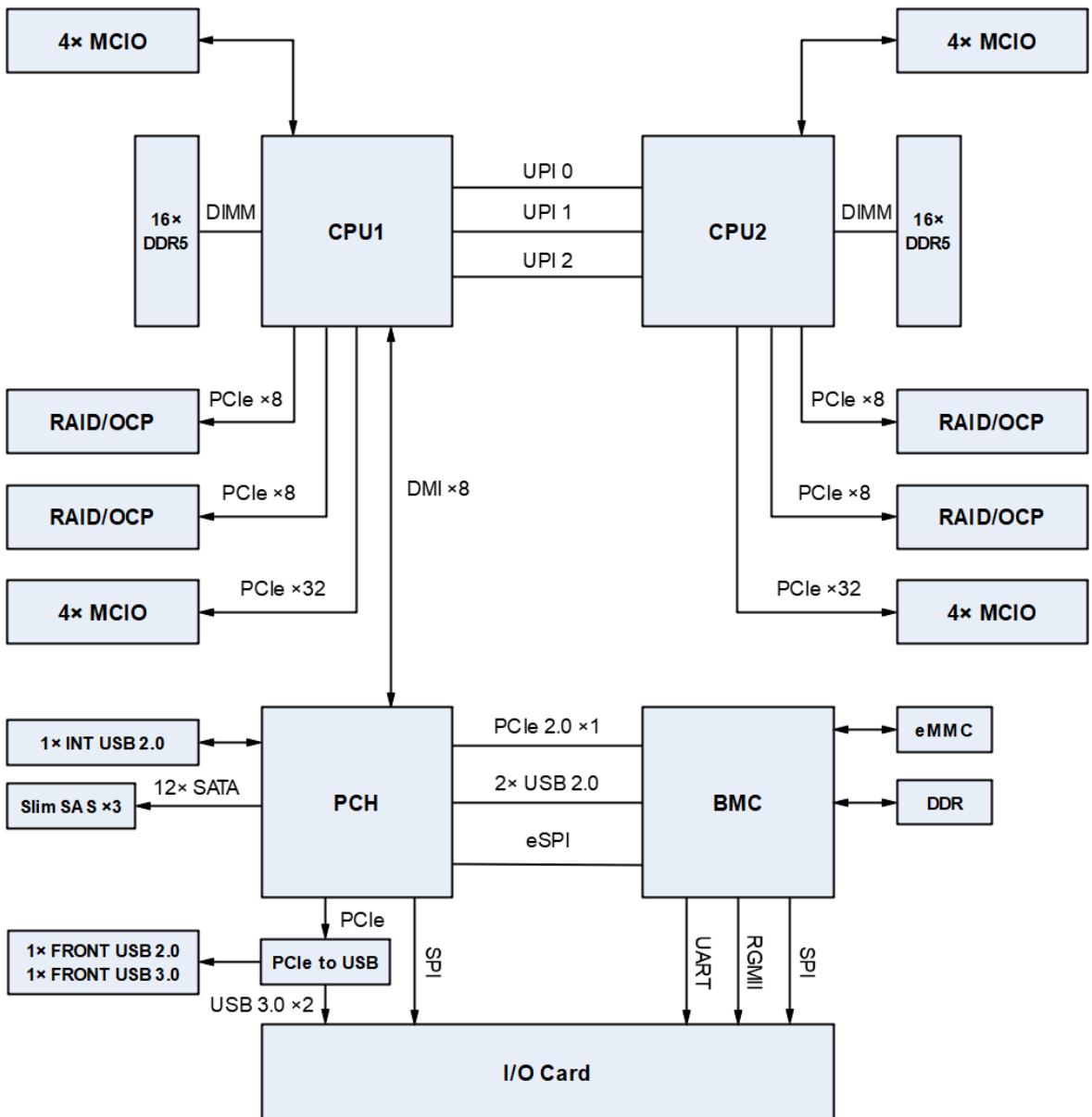

Table of Contents

Physical Structure	1
Logical Structure.....	2

1.1 Physical Structure

Figure 1-1 shows the internal components of the NCS6742G N4 server.

Figure 1-1 Internal Layout


No.	Component	No.	Component
1	Front hard disk	2	Front hard disk backplane
3	Chassis	4	Mainboard
5	Fan unit	6	Fan tray
7	Memory module	8	GPU bracket

No.	Component	No.	Component
9	PCIe switch board	10	TPM card
11	I/O card	12	Power adapter
13	Power module	14	OCP card
15	OCP adapter	16	GPU
17	CPU	18	Heat sink
19	RAID controller card module	20	Air duct

1.2 Logical Structure

1.2.1 Mainboard

Figure 1-2 shows the system modules of the NCS6742G N4 server and the logical relationships among these modules.

Figure 1-2 Logical Structure

For a description of the modules of the NCS6742G N4 server, refer to [Table 1-1](#).

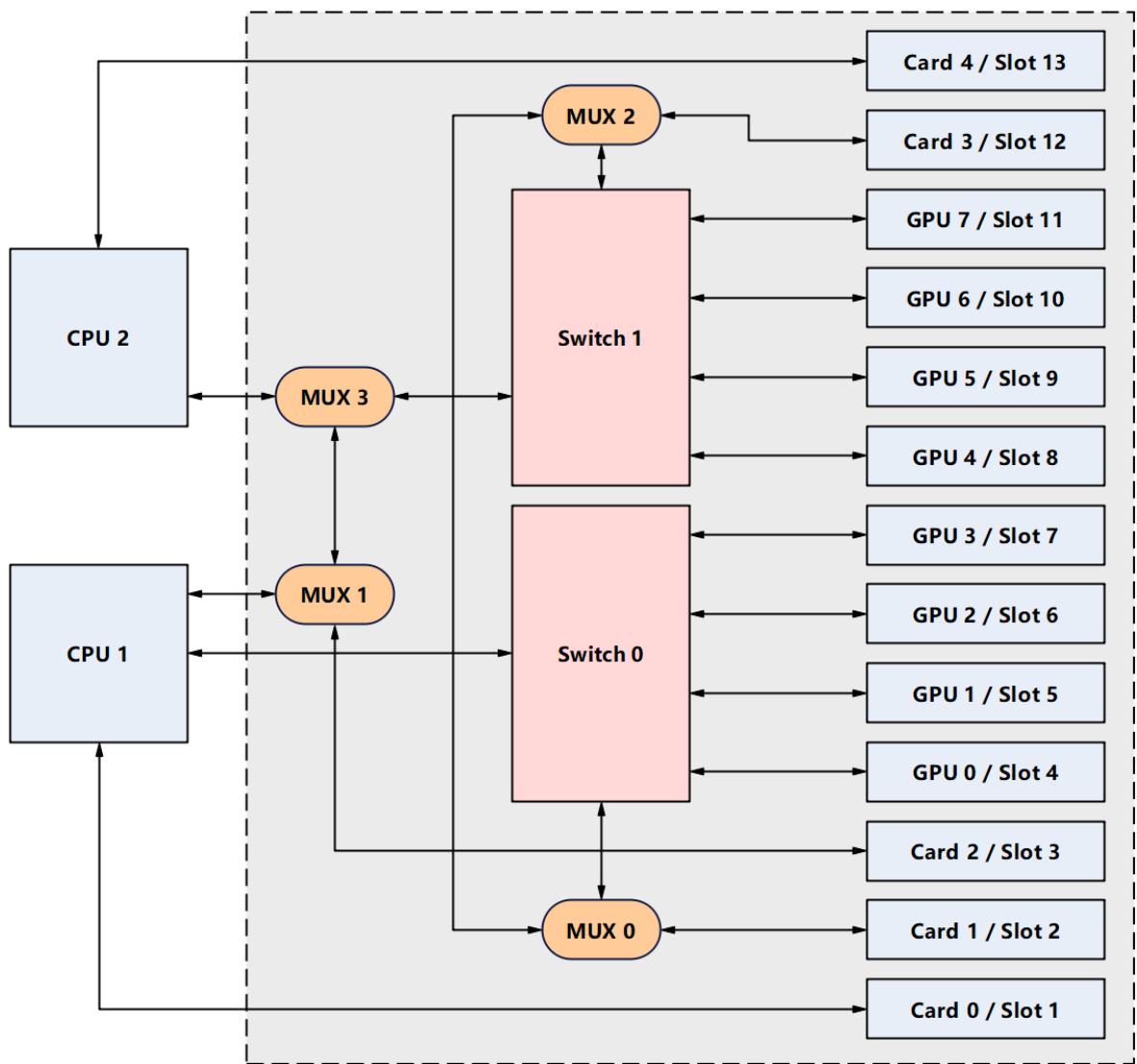
Table 1-1 Module Descriptions

Module	Description
CPU	Used for processing information and running programs as the calculation and control core of the server. The NCS6742G N4 server supports a maximum of two CPUs, which are interconnected through three UPI links, with the maximum transmission rate of 20 GT/s per link.
DDR5	Used for storing computational data in the CPUs and the data exchanged with external storage such as hard disks. The NCS6742G N4 server provides 32 DDR5 DIMM slots.

Module	Description
MCIO	High-speed signal connector, which is connected to the hard disk backplane and switch board.
RAID	Hard disk RAID controller, which protects storage device data and supports common RAID levels such as RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50 and RAID 60.
OCP	Used for expanding the network capacity of the server. The NCS6742G N4 server supports various standard OCP NIC 3.0 cards.
PCH	Southbridge chipset on the mainboard of the server. SATA , PCIe , and USB interfaces can be integrated into it. The NCS6742G N4 server uses the Emmitsburg chipset.
USB	Exchanges data between the server and external devices. The NCS6742G N4 server provides one USB 2.0 interface and three USB 3.0 interfaces.
SlimSAS	High-speed signal connector, which is connected to the hard disk backplane and RAID adapter.
SATA	Hard disk interface specification. The NCS6742G N4 server provides twenty SATA 3.0 interfaces.
BIOS	Provides the most basic and direct hardware configuration and control for the server.
BMC	Used for upgrading server firmware and viewing device information when the server is not powered on.
DDR	Supports BMC operation.
I/O Card	Provides one standard VGA interface and two standard USB 3.0 interfaces.

1.2.2 Switch Boards

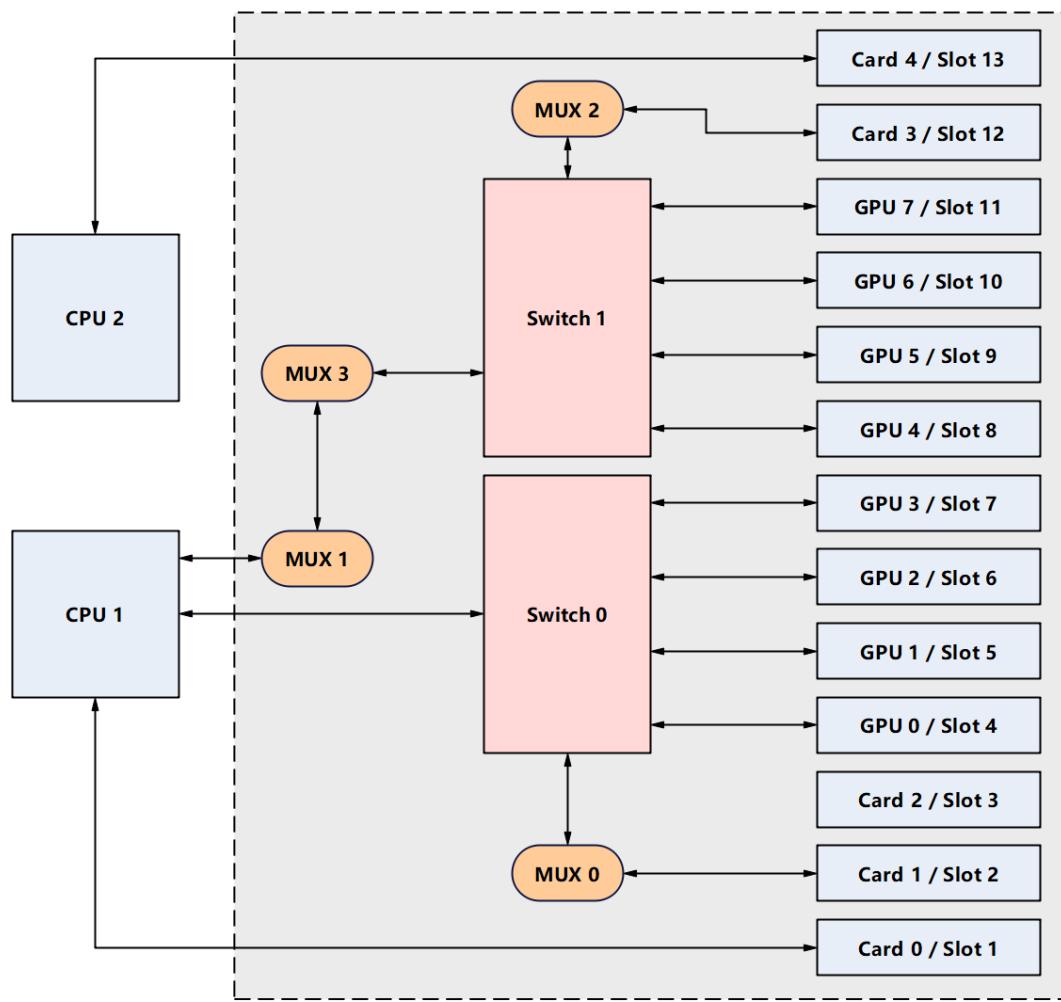
Through a [PCIe](#) switch board, the NCS6742G N4 server can provide standard PCIe slots to extend system functions.


The NCS6742G N4 server supports the following types of switch boards:

- [1.2.2.1 13-Slot PCIe 4.0 Switch Board](#)
- [1.2.2.2 13-Slot PCIe 5.0 Switch Board](#)
- [1.2.2.3 21-Slot PCIe 4.0 Switch Board](#)
- [1.2.2.4 12-Slot PCIe 5.0 Pass-Through Board](#)

1.2.2.1 13-Slot PCIe 4.0 Switch Board

[Figure 1-3](#) shows the logical structure of a 13-slot [PCIe](#) 4.0 switch board.


Figure 1-3 Logical Structure of a 13-Slot PCIe 4.0 Switch Board

The 13-slot PCIe 4.0 switch board supports working mode change in one click. The switch board operates in one of the following three modes:

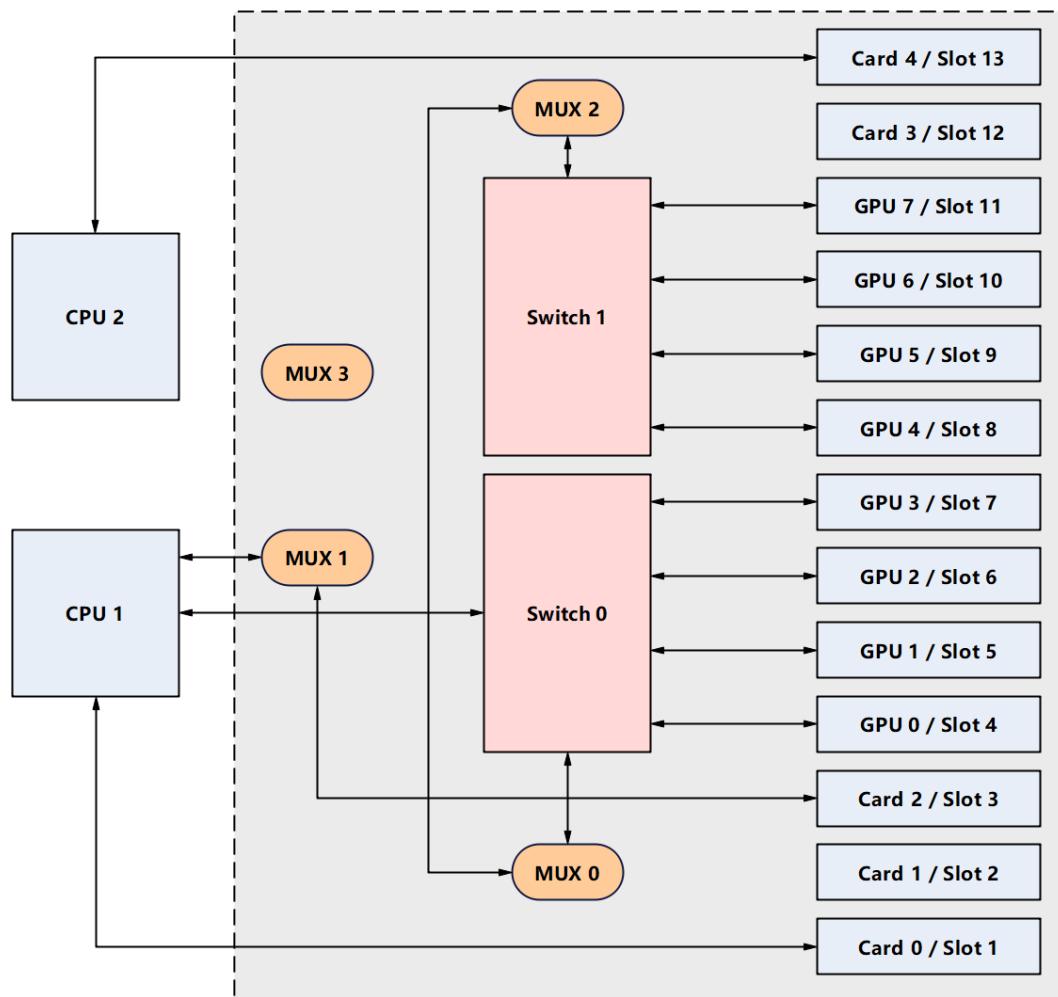
- **Normal mode**

In normal mode, the server enables point-to-point communication between GPUs while guaranteeing sufficient I/O bandwidth between CPUs and GPUs. [Figure 1-4](#) shows the logical structure of the switch board in this mode.

Figure 1-4 Logical Structure in Normal Mode

For the relationships between connectors and the slots on the 13-slot PCIe 4.0 switch board in normal mode, refer to [Table 1-2](#).

Table 1-2 Relationships Between Connectors and the Slots on the 13-Slot PCIe 4.0 Switch Board—Normal Mode


Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X5	X14
	X7	X48
Switch 1: Slot 8–Slot 12	X2	X42
	X4	X46
Switch 0: Slot 2, Slot 4–Slot 7	X1	X41
	X3	X44
-	X6	X70

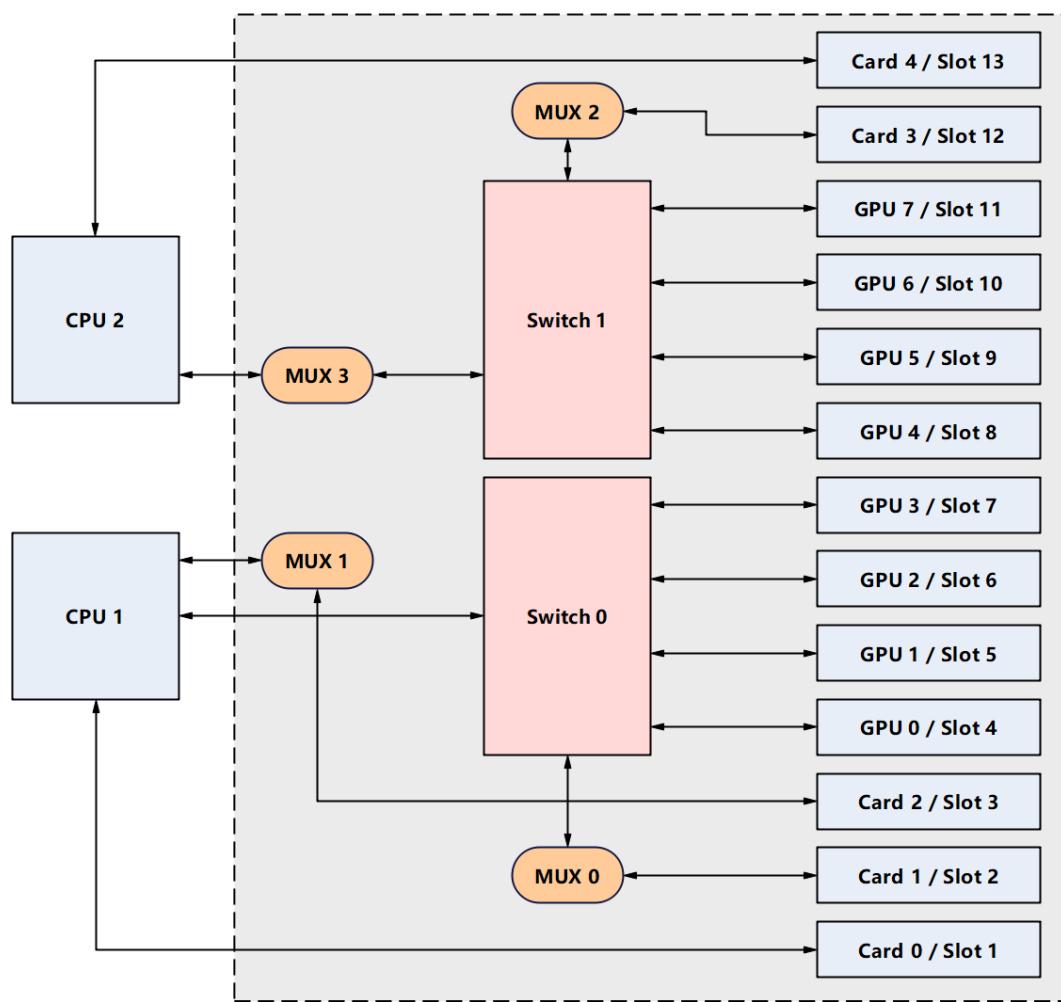
Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
-	X8	X55
Slot 13	X4	X53
	X10	X54

- **Cascading mode**

In cascading mode, the server preferentially ensures point-to-point communication between GPUs, effectively reducing their communication delay. [Figure 1-5](#) shows the logical structure of the switch board in this mode.

[Figure 1-5 Logical Structure in Cascading Mode](#)

For the relationships between connectors and the slots on the 13-slot PCIe 4.0 switch board in cascading mode, refer to [Table 1-3](#).


Table 1-3 Relationships Between Connectors and the Slots on the 13-Slot PCIe 4.0 Switch Board—Cascading Mode

Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X5	X14
	X7	X48
Switch 0 and Switch 1: Slot 4–Slot 11	X2	X42
	X4	X46
	X1	X41
	X3	X44
Slot 3	X6	X70
	X8	X55
Slot 13	X4	X53
	X10	X54

- **Balanced mode**

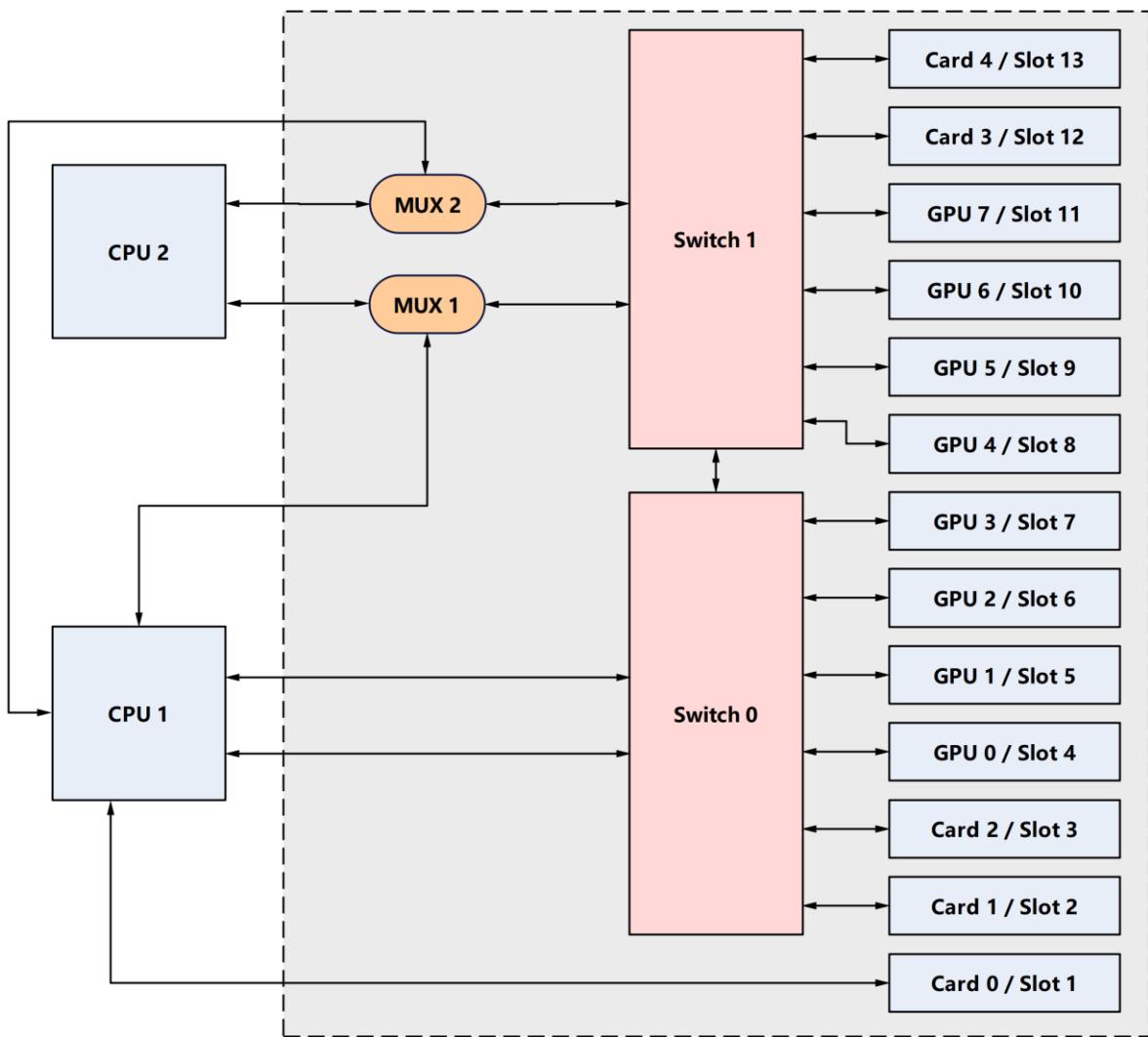
In balanced mode, the server provides better I/O bandwidth between CPUs and GPUs.

[Figure 1-6](#) shows the logical structure of the switch board in this mode.

Figure 1-6 Logical Structure in Balanced Mode

For the relationships between connectors and the slots on the 13-slot PCIe 4.0 switch board in balanced mode, refer to [Table 1-4](#).

Table 1-4 Relationships Between Connectors and the Slots on the 13-Slot PCIe 4.0 Switch Board—Balanced Mode

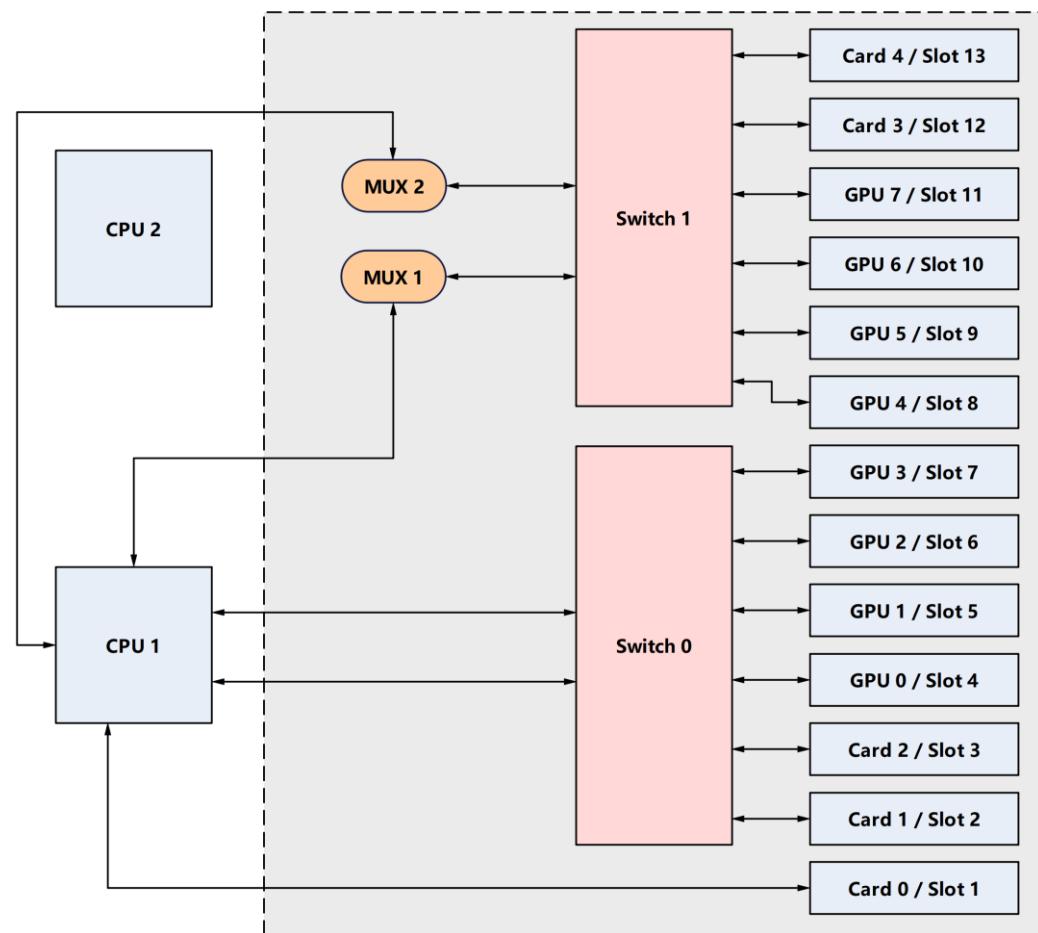

Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X5	X14
	X7	X48
Slot 3	X2	X42
	X4	X46
Switch 0: Slot 2, Slot 4–Slot 7	X1	X41
	X3	X44
Switch 1:	X6	X70

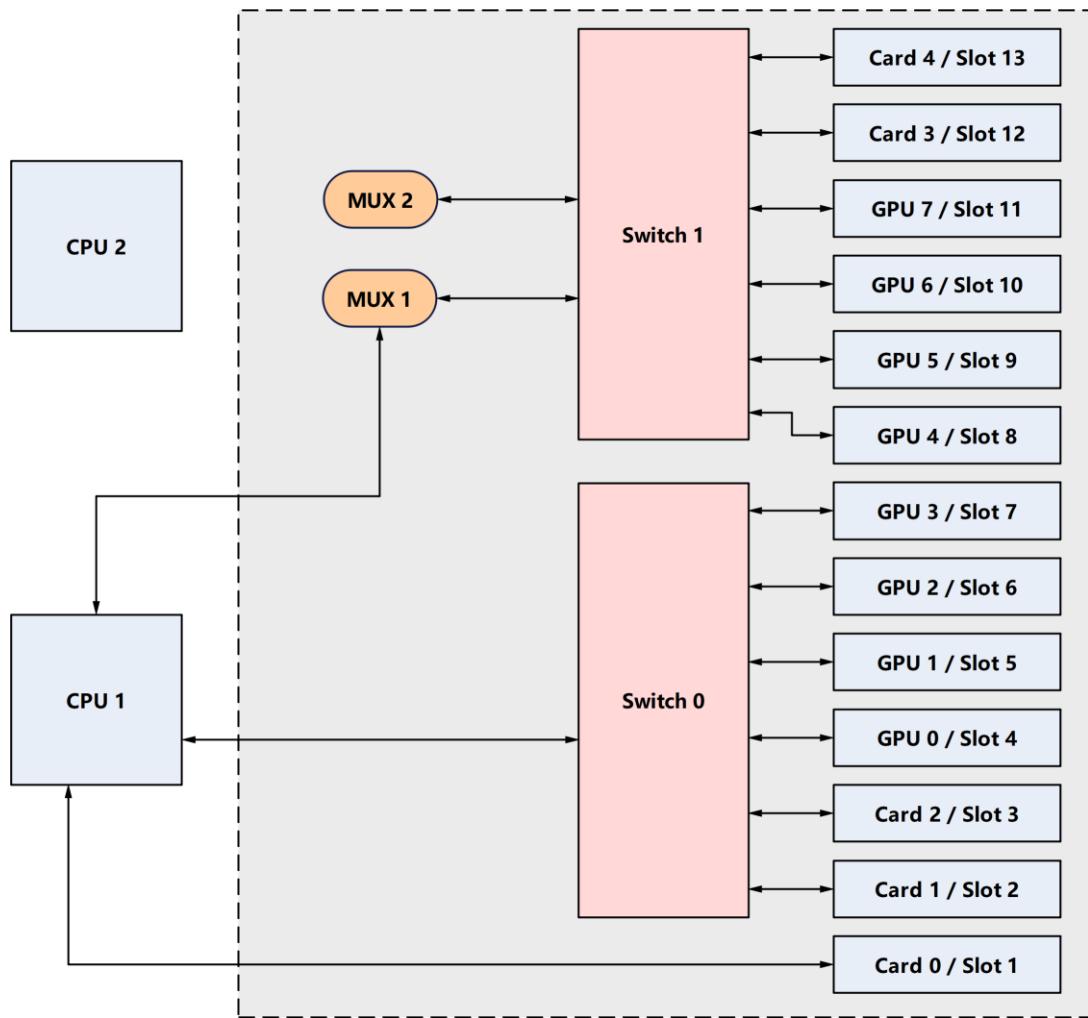
Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 8–Slot 12	X8	X55
Slot 13	X4	X53
	X10	X54

1.2.2.2 13-Slot PCIe 5.0 Switch Board

Figure 1-7 shows the logical structure of a 13-slot PCIe 5.0 switch board.

Figure 1-7 Logical Structure of a 13-Slot PCIe 5.0 Switch Board




The 13-slot PCIe 5.0 switch board supports working mode change in one click. The switch board operates in one of the following three modes:

- **Normal mode**

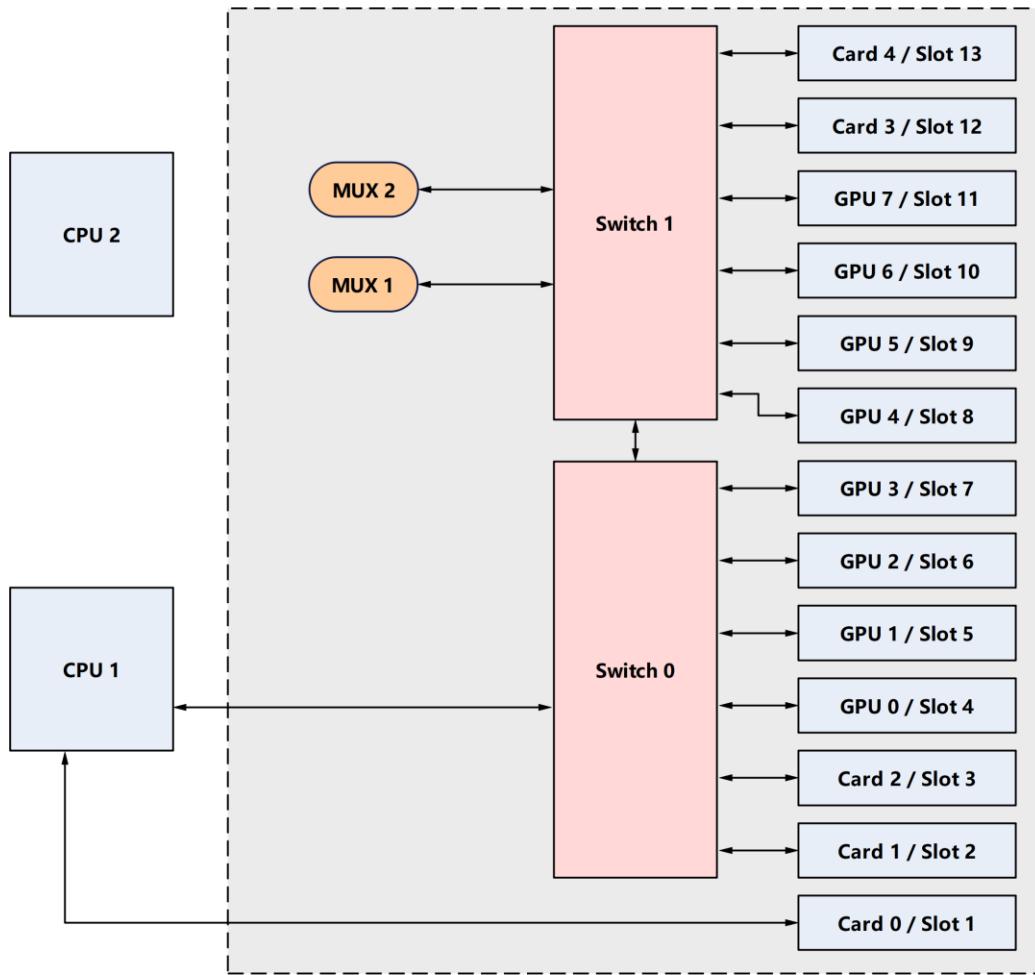
In normal mode, the server enables point-to-point communication between GPUs while guaranteeing sufficient I/O bandwidth between CPUs and GPUs. Figure 1-8 and Figure 1-9 show the logical structure of the switch board in this mode.

Figure 1-8 Logical Structure in Dual Uplink Normal Mode

Figure 1-9 Logical Structure in Single Uplink Normal Mode

For the relationships between connectors and the slots on the 13-slot PCIe 5.0 switch board in normal mode, refer to [Table 1-5](#).

Table 1-5 Relationships Between Connectors and the Slots on the 13-Slot PCIe 5.0 Switch Board—Normal Mode


Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X5	X14
	X7	X48
Switch 1: Slot 8–Slot 13	X8	X8
	X6	X47
Switch 0: Slot 2–Slot 7	X2	X42
	X4	X46
	X1	X41

Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
	X3	X44
Switch 1: Slot 8–Slot 13	X54	X56
	X55	X36
-	X47	X70
-	X9	X55
-	X10	X53
-	X48	X54

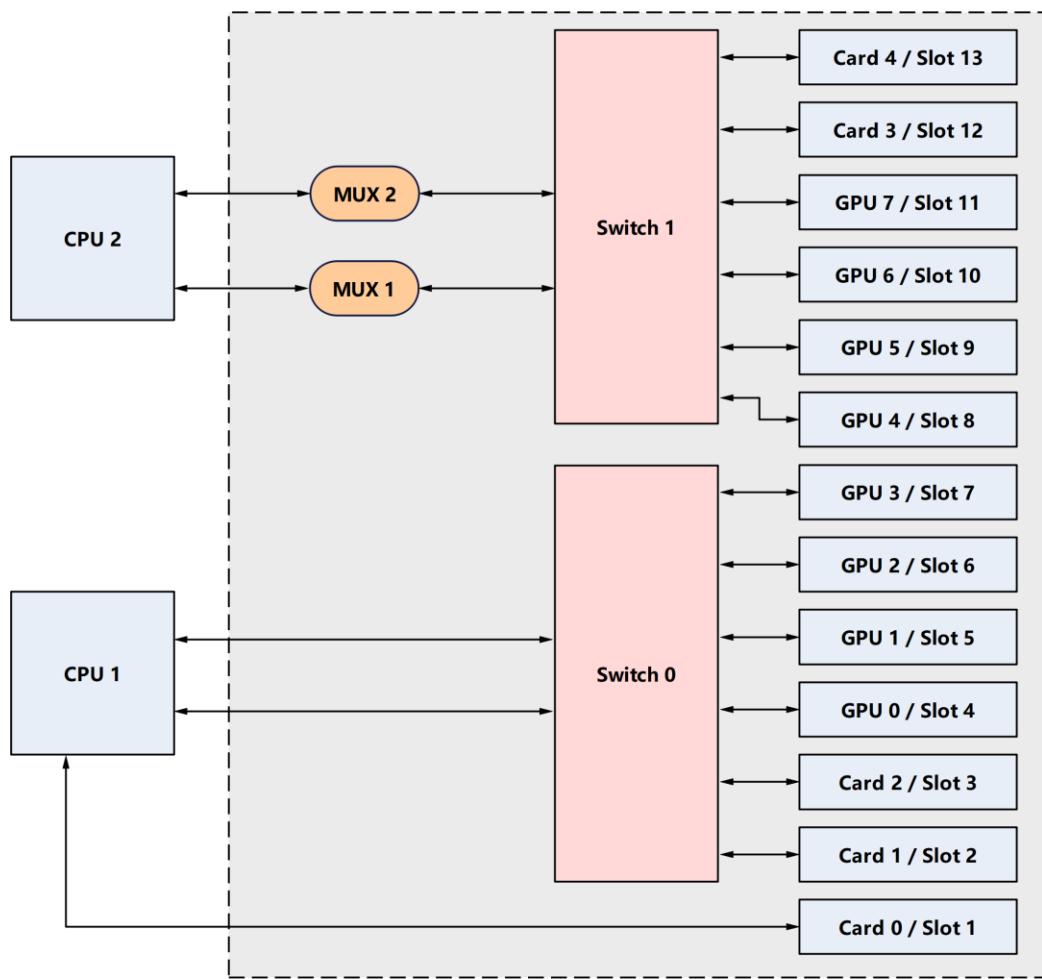
- **Cascading mode**

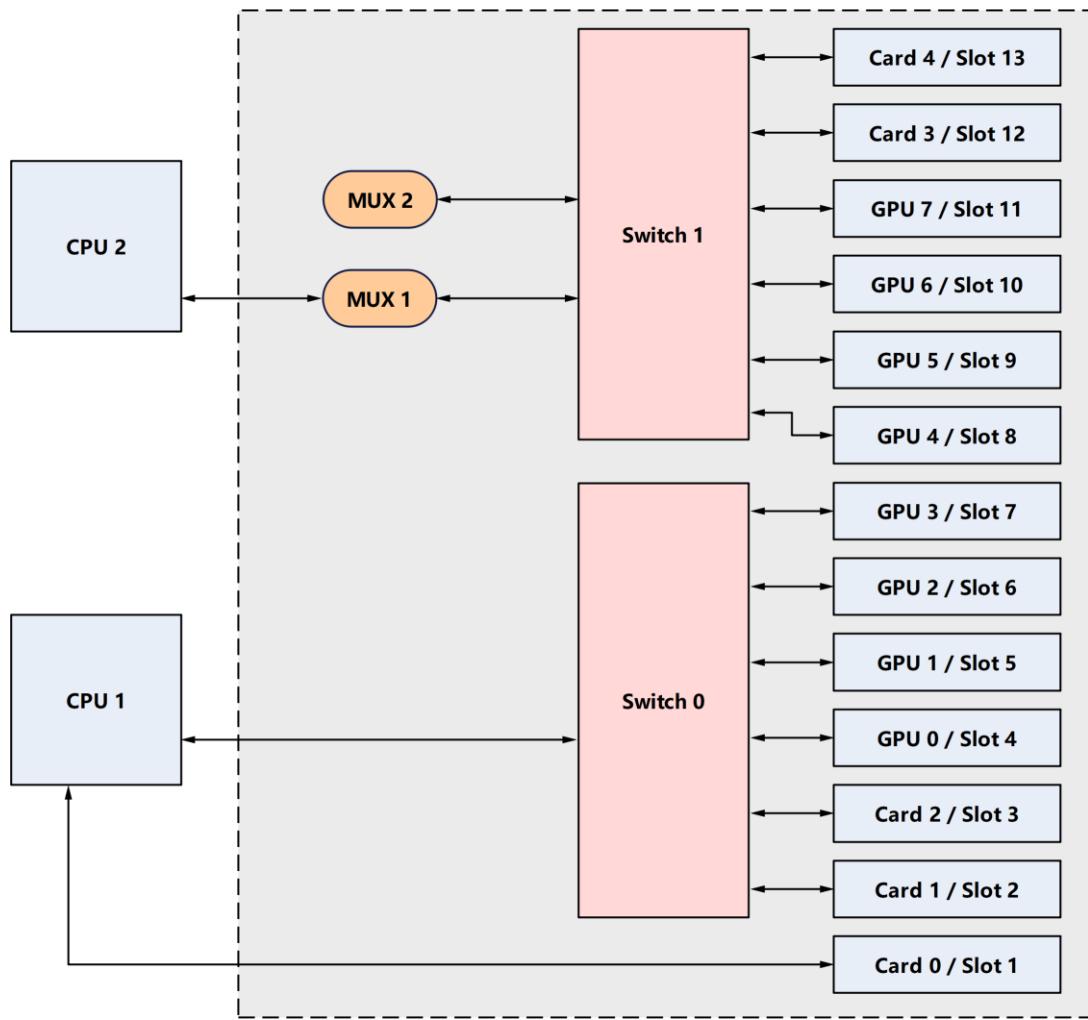
In cascading mode, the server preferentially ensures point-to-point communication between GPUs, effectively reducing their communication delay. [Figure 1-10](#) shows the logical structure of the switch board in this mode.

[Figure 1-10 Logical Structure in Cascading Mode](#)

For the relationships between connectors and the slots on the 13-slot PCIe 5.0 switch board in cascading mode, refer to [Table 1-6](#).

Table 1-6 Relationships Between Connectors and the Slots on the 13-Slot PCIe 5.0 Switch Board—Cascading Mode


Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X5	X14
	X7	X48
-	X8	X8
-	X6	X47
Switch 0 and Switch 1: Slot 2–Slot 13	X2	X42
	X4	X46
-	X1	X41
-	X3	X44
-	X54	X56
-	X55	X36
-	X47	X70
-	X9	X55
-	X10	X53
-	X48	X54


- Balanced mode

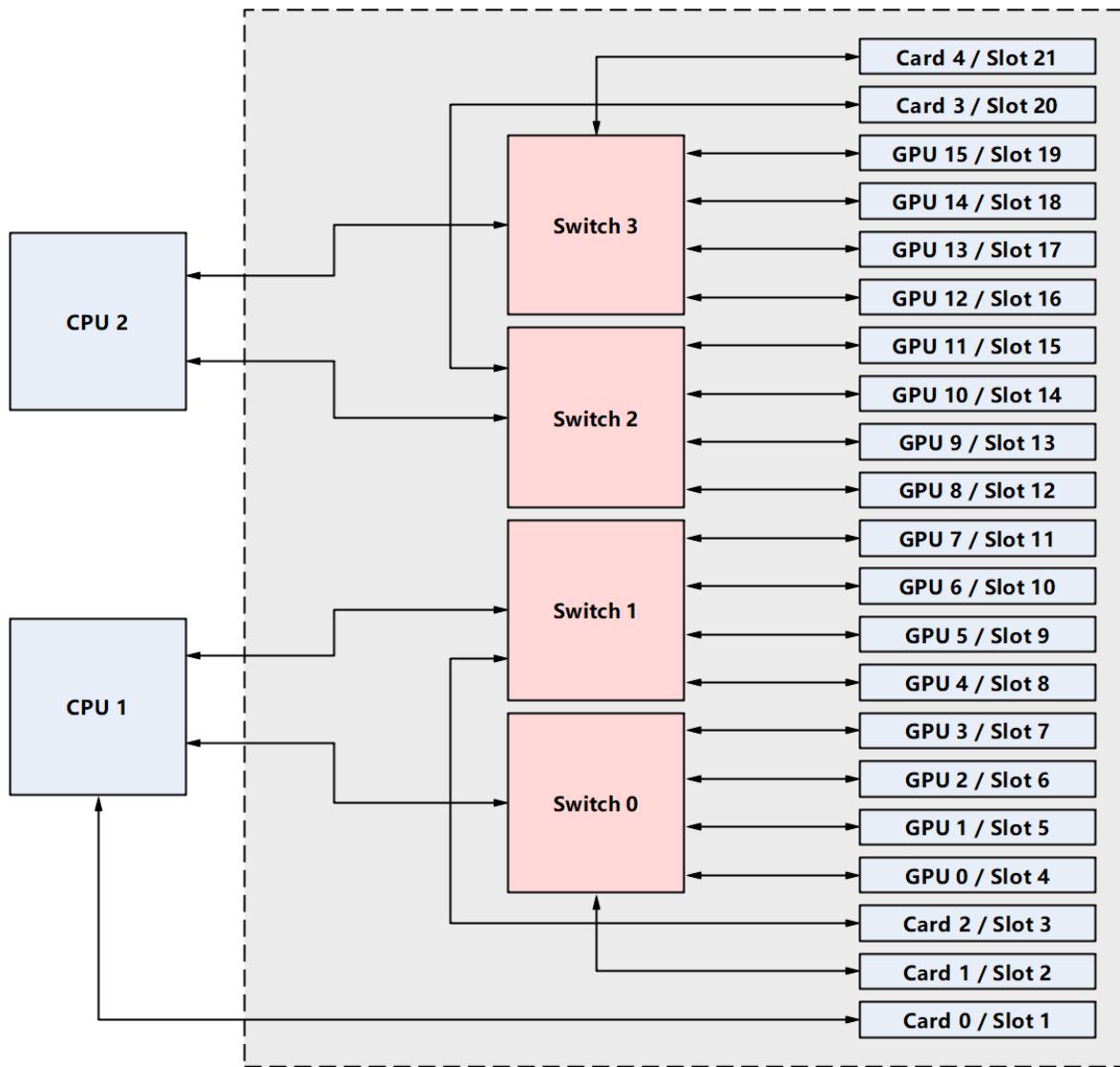
In balanced mode, the server provides better I/O bandwidth between CPUs and GPUs.

[Figure 1-11](#) and [Figure 1-12](#) show the logical structure of the switch board in this mode.

Figure 1-11 Logical Structure in Dual Uplink Balanced Mode

Figure 1-12 Logical Structure in Single Uplink Balanced Mode

For the relationships between connectors and the slots on the 13-slot PCIe 5.0 switch board in balanced mode, refer to [Table 1-7](#).


Table 1-7 Relationships Between Connectors and the Slots on the 13-Slot PCIe 5.0 Switch Board—Balanced Mode

Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X5	X14
	X7	X48
-	X8	X8
-	X6	X47
Switch 0: Slot 2–Slot 7	X2	X42
	X4	X46
	X1	X41

Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
	X3	X44
-	X54	X56
-	X55	X36
Switch 1: Slot 8–Slot 13	X47	X70
	X9	X55
	X10	X53
	X48	X54

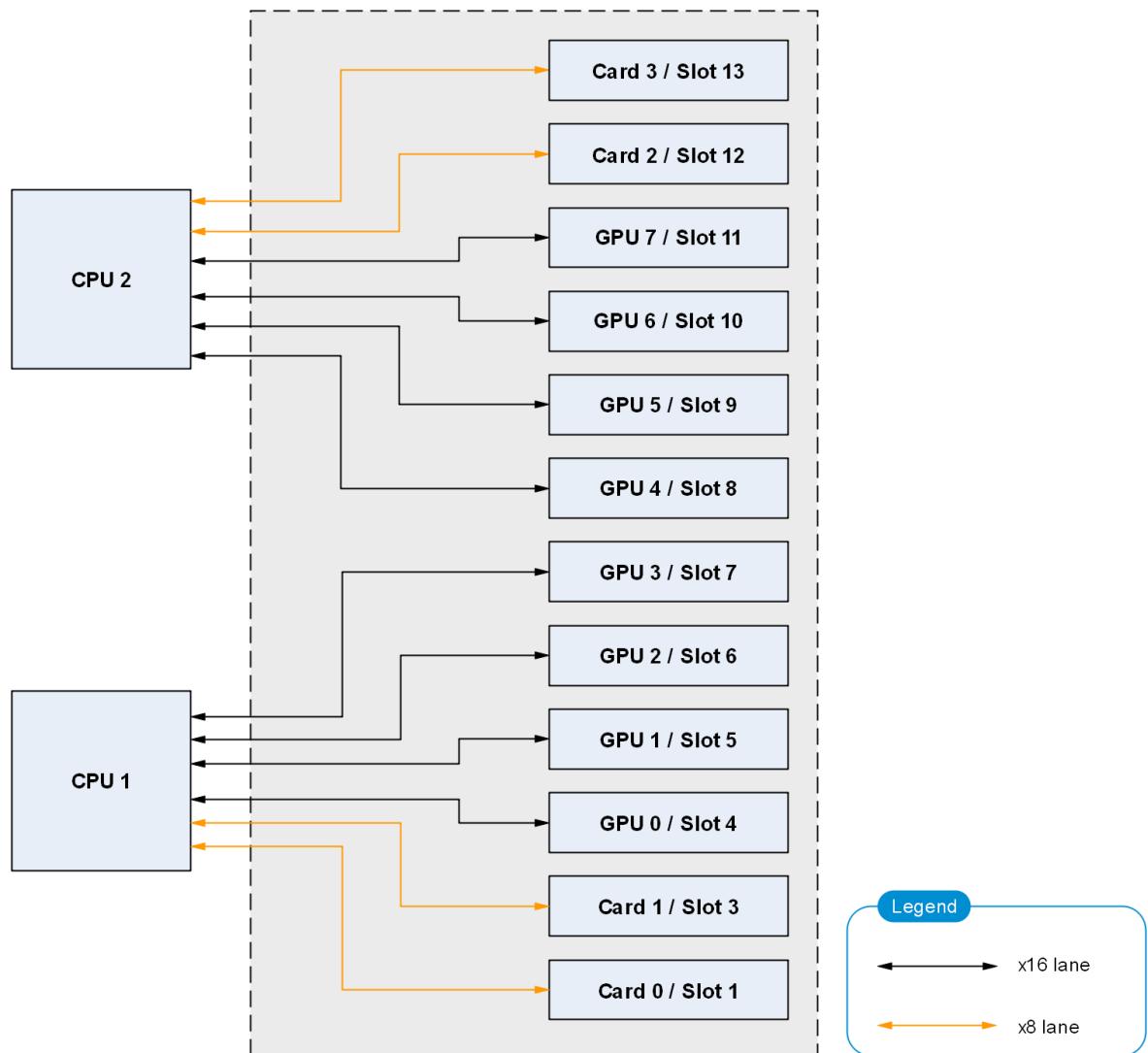
1.2.2.3 21-Slot PCIe 4.0 Switch Board

[Figure 1-13](#) shows the logical structure of a 21-slot PCIe 4.0 switch board.

Figure 1-13 Logical Structure of a 21-Slot PCIe 4.0 Switch Board

For the relationships between connectors and the slots on the 21-slot PCIe 4.0 switch board, refer to [Table 1-8](#).

Table 1-8 Relationships Between Connectors and the Slots on the 21-Slot PCIe 4.0 Switch Board


Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 1	X73	X14
	X7	X48
Switch 0: Slot 2, Slot 4–Slot 7	X2	X42
	X4	X46
Switch 1:	X1	X41

Slot ID	Connector Position ID on the Switch Board	Connector Position ID on the Mainboard
Slot 3, Slot 8–Slot 11	X3	X44
Switch 2: Slot 12–Slot 15, Slot 20	X6	X70
	X8	X55
Switch 3: Slot 16–Slot 19, Slot 21	X9	X53
	X10	X54

1.2.2.4 12-Slot PCIe 5.0 Pass-Through Board

Figure 1-14 shows the logical structure of a 12-slot PCIe 5.0 pass-through board.

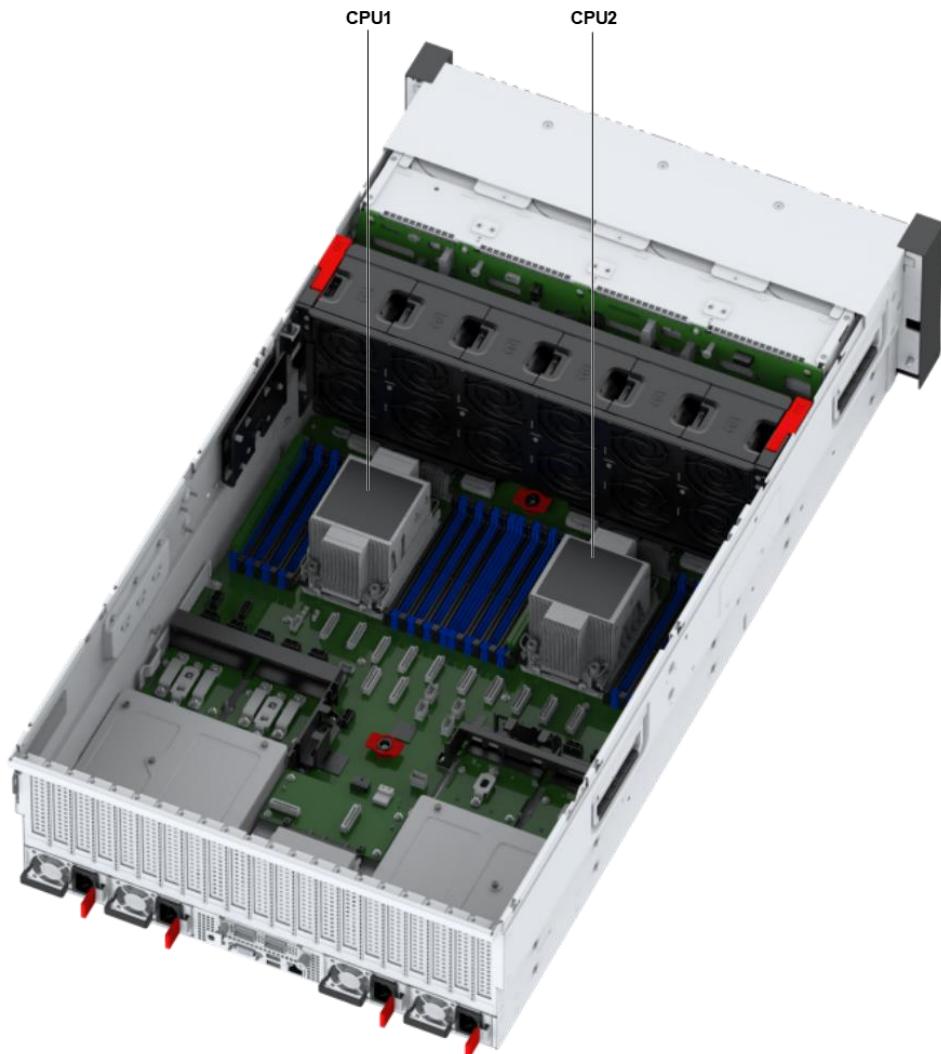
Figure 1-14 Logical Structure of a 12-Slot PCIe 5.0 Pass-Through Board

For the relationships between connectors and the slots on the 12-slot PCIe 5.0 pass-through board, refer to [Table 1-9](#).

Table 1-9 Relationships Between Connectors and the Slots on the 12-Slot PCIe 5.0 Pass-Through Board

Slot ID	Connector Position ID on the Pass-Through Board	Connector Position ID on the Mainboard
Slot 1	X7	X14
	X5	X48
Slot 3	X6	X48
Slot 4	X8	X8
	X10	X47
Slot 5	X9	X42
	X11	X46
Slot 6	X14	X41
	X12	X44
Slot 7	X13	X56
	X15	X36
Slot 8	X17	X58
	X19	X28
Slot 9	X16	X70
	X18	X55
Slot 10	X20	X53
	X22	X54
Slot 11	X21	X13
	X23	X18
Slot 12	X25	X50
Slot 13	X24	X49
	X26	X50

Chapter 2


CPU

The NCS6742G N4 server uses a dual-CPU design, supporting [®] Xeon [®] Scalable processors (Intel Sapphire Rapids/Emerald Rapids).

[Figure 2-1](#) shows the positions of CPUs in the NCS6742G N4.

Figure 2-1 Positions of CPUs

The following CPU configuration in [Table 2-1](#) is recommended for the NCS6742G N4 server to maximize system performance and functions.

Table 2-1 Recommended CPU Configuration

Number of CPUs	CPU1	CPU2
Two	√	√
One	√	-

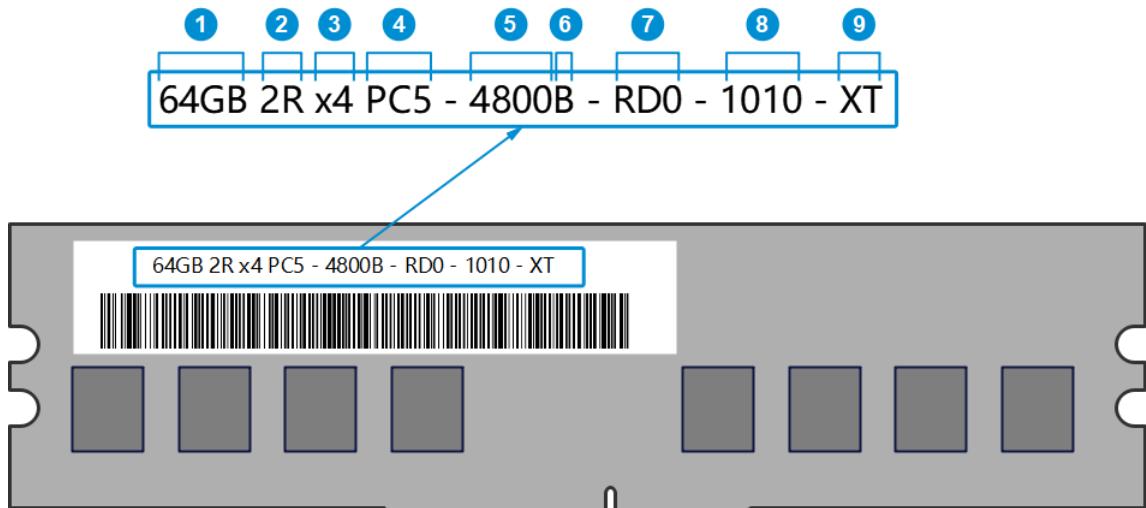
- "√" indicates to install a CPU in the slot.
- "-" indicates not to install a CPU in the slot.

Notice

The CPUs installed in a server must be of the same model.

Chapter 3

DIMM


Table of Contents

DIMM Label.....	23
DIMM Compatibility Rules	24
DIMM Installation Guidelines.....	25
DIMM Slot Positions	25
Recommended DIMM Configuration.....	27
Memory Protection Technologies	28

3.1 DIMM Label

A **DIMM** label specifies the attributes of a DIMM. Figure 3-1 shows a typical DIMM label.

Figure 3-1 DIMM Label

For a description of the DIMM label, refer to [Table 3-1](#).

Table 3-1 DIMM Label Descriptions

No.	Attribute	Description
1	Capacity	<ul style="list-style-type: none">• 16 GB• 32 GB

No.	Attribute	Description
		<ul style="list-style-type: none"> ● 64 GB ● 128 GB ● 256 GB
2	Rank	<ul style="list-style-type: none"> ● 1R = single-ranked ● 2R = dual-ranked ● 4R = quad-ranked ● 8R = octo-ranked
3	DRAM data-bus width	<ul style="list-style-type: none"> ● x4 = 4 bits ● x8 = 8 bits
4	DIMM connector type	PC5 = DDR5
5	Maximum memory speed	4800 MT/s
6	CAS latency (CL-nRCD-nRP)	<ul style="list-style-type: none"> ● AN = 34-34-34 ● B = 40-39-39 ● BN = 40-40-40 ● C = 42-42-42
7	DIMM type	RD0: RDIMM D0
8	SPD version	<ul style="list-style-type: none"> ● First 10: SPD revision level (basic section) ● Last 10: SPD revision level (specific section, namely bytes 192–447)
9	Temperature grade	<ul style="list-style-type: none"> ● XT (Extended Temperature grade): 0#–95°C ● NT (Normal Temperature grade): 0#–85°C

3.2 DIMM Compatibility Rules

DDR5 is a computer memory specification. Compared with DDR4 memory, DDR5 memory has higher speed and bandwidth, lower power consumption, and higher stability and reliability.

The following compatibility rules apply when you install DDR5 DIMMs:

- The NCS6742G N4 server must use DDR5 DIMMs of the same model. The memory speed is the lower one of the following:
 - ➔ Maximum memory speed supported by the [CPUs](#).
 - ➔ Maximum operating speed of the DIMMs.
- Mix of different types ([RDIMM](#) and RDIMM-3DS) and specifications (capacity, data-bus width, rank and height) of DDR5 DIMMs is not allowed.
- The total memory capacity equals the sum of all DDR5 DIMM capacities.
- The maximum number of DIMMs depends on the types of DIMMs and number of ranks.

For parameter descriptions of the DDR5 DIMMs supported by the server, refer to [Table 3-2](#).

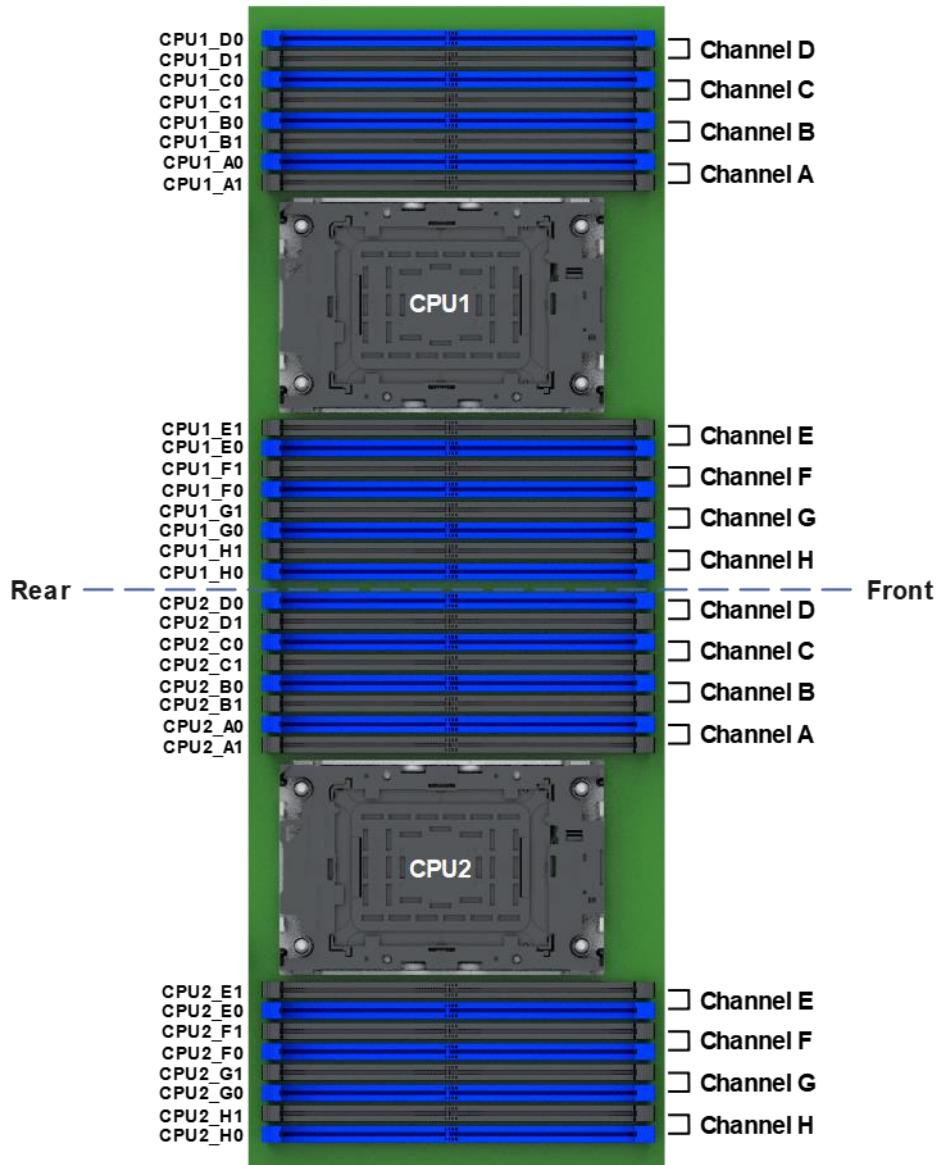
Table 3-2 DDR5 DIMM Parameter Descriptions

Item	Value				
Capacity (GB) of a single DDR5 DIMM	16	32	64	128	256
Type	RDIMM	RDIMM	RDIMM	RDIMM-3DS	RDIMM-3DS
Rated memory speed (MT/s)	5600	5600	5600	5600	5600
Operating voltage (V)	1.1	1.1	1.1	1.1	1.1
Maximum number of DDR5 DIMMs ¹	32	32	32	32	32
Maximum total capacity (GB) of DDR5 DIMMs ²	512	1024	2048	4096	8192
Maximum operating speed (MT/s)	1DPC ³	<ul style="list-style-type: none"> Sapphire Rapids processor: 4800 Emerald Rapids processor: 5600 			
	2DPC	4400	4400	4400	4400

1. By default, the server with two CPUs supports a maximum of 32 DDR5 DIMMs. If the server is configured with only one CPU, the maximum number of DDR5 DIMMs supported is 16.
2. The maximum total capacity of DDR5 DIMMs depends on the types of CPUs and is the value in full memory configuration.
3. DIMM Per Channel (DPC) indicates the number of DIMMs installed in each memory channel.

3.3 DIMM Installation Guidelines

The general guidelines on installing DDR5 DIMMs are as follows:


- For an SPR CPU (excluding HBM CPUs), at least one DDR5 DIMM needs to be configured. For an SPR HBM CPU, DDR5 DIMMs are optional.
- All the configured memory modules must be DDR5 RDIMMs.
- All the configured memory modules must have the same number of ranks.

3.4 DIMM Slot Positions

Each CPU in the NCS6742G N4 server provides eight memory channels, and each memory channel consists of two DIMM slots.

Therefore, the NCS6742G N4 server provides a maximum of 32 DDR5 DIMMs, with the highest rate up to 5600 MT/s.

Figure 3-2 shows the memory channels and DIMM slots of the NCS6742G N4 server.

Figure 3-2 DIMM Slots

- Front indicates the server front view.
- Rear indicates the server rear view.

For the relationships among the CPUs, memory channels, and DIMM slots of the NCS6742G N4 server, refer to [Table 3-3](#).

Table 3-3 Relationships Among CPUs, Memory Channels and DIMM Slots

CPU	Memory Channel	DIMM Slot	CPU	Memory Channel	DIMM Slot
CPU1	A	CPU1_A0	CPU2	A	CPU2_A0
		CPU1_A1			CPU2_A1
	B	CPU1_B0		B	CPU2_B0

CPU	Memory Channel	DIMM Slot	CPU	Memory Channel	DIMM Slot
	C	CPU1_B1		C	CPU2_B1
		CPU1_C0			CPU2_C0
		CPU1_C1			CPU2_C1
	D	CPU1_D0		D	CPU2_D0
		CPU1_D1			CPU2_D1
	E	CPU1_E0		E	CPU2_E0
		CPU1_E1			CPU2_E1
	F	CPU1_F0		F	CPU2_F0
		CPU1_F1			CPU2_F1
	G	CPU1_G0		G	CPU2_G0
		CPU1_G1			CPU2_G1
	H	CPU1_H0		H	CPU2_H0
		CPU1_H1			CPU2_H1

3.5 Recommended DIMM Configuration

Notice

This section recommends the number and layout of **DIMMs** in different scenarios, which help to maximize memory performance.

Recommended DIMM Configuration (One CPU)

Figure 3-3 shows the configuration of DIMMs when one **CPU** (CPU1) is configured for the NCS6742G N4 server.

Figure 3-3 Recommended DIMM Configuration (One CPU)

DDR5 Qty	D	CPU1_D0	CPU1_D1	CPU1_C0	CPU1_C1	CPU1_B0	CPU1_B1	A	CPU1_A0	CPU1_A1				
											E	F	G	H
1	-	-	-	-	-	-	-	-	✓	-	-	-	-	-
2	-	-	-	-	-	-	-	-	✓	-	-	-	-	-
4	-	-	✓	-	-	-	-	-	✓	-	-	✓	-	-
6	✓	-	✓	-	-	-	-	-	✓	-	-	✓	-	-
8	✓	-	✓	-	✓	-	✓	-	✓	-	-	✓	-	✓
12	✓	-	✓	✓	✓	-	✓	✓	✓	✓	✓	✓	-	✓
16	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

- "-✓" indicates to install a DIMM.
- "-" indicates not to install a DIMM.

Recommended DIMM Configuration (Two CPUs)

Figure 3-4 shows the configuration of DIMMs when two CPUs (CPU1 and CPU2) are configured for the NCS6742G N4 server.

Figure 3-4 Recommended DIMM Configuration (Two CPUs)

DDR5 Qty	D	CPU1_D0	CPU1_D1	CPU1_C0	CPU1_C1	CPU1_B0	CPU1_B1	A	CPU1_A0	CPU1_A1	E	F	G	H	D	C	B	A	E	F	G	H			
											CPU1_E1	CPU1_E0	CPU1_F1	CPU1_F0	CPU1_G1	CPU1_G0	CPU1_H1	CPU1_H0	CPU2_E1	CPU2_E0	CPU2_F1	CPU2_F0	CPU2_G1	CPU2_G0	CPU2_H1
2	-	-	-	-	-	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4	-	-	-	-	-	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
6	-	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
8	-	-	✓	-	-	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
10	-	-	✓	-	-	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
12	✓	-	✓	-	-	-	-	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
16	✓	-	✓	-	✓	-	✓	-	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
24	✓	-	✓	✓	✓	-	✓	✓	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
32	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

- "-✓" indicates to install a DIMM.
- "-" indicates not to install a DIMM.

When two CPUs are configured, it is not recommended that you install an odd number of DIMMs.

3.6 Memory Protection Technologies

DDR5 DIMMs support the following memory protection technologies:

- Error Check and Correction ([ECC](#))
- On-die ECC
- Error Check and Scrub ([ECS](#))

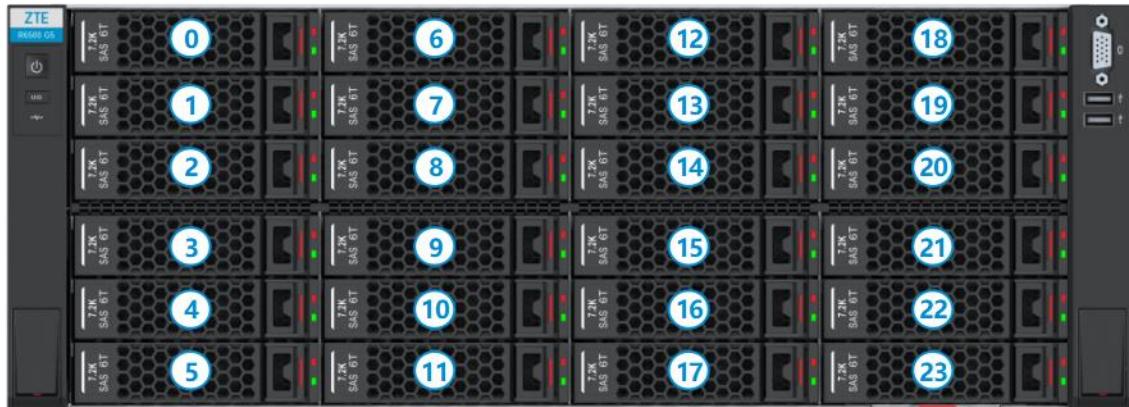
- Memory Mirroring
- Memory Single Device Data Correction ([SDDC](#))
- Failed [DIMM](#) Isolation
- Memory Thermal Throttling
- Command/Address Parity Check and Retry
- Memory Demand/Patrol Scrubbing
- Memory Data Scrambling
- Post Package Repair ([PPR](#))
- Write Data [CRC](#) Protection
- Adaptive Data Correction - Single Region (ADC-SR)
- Adaptive Double Device Data Correction - Multiple Region ([ADDDC-MR](#))
- Partial Cache Line Sparing ([PCLS](#), [HBM](#) CPU only)

Chapter 4

Storage

Table of Contents

Hard Disk Slot.....	30
Hard Disk Indicator	32
RAID Controller Card.....	33

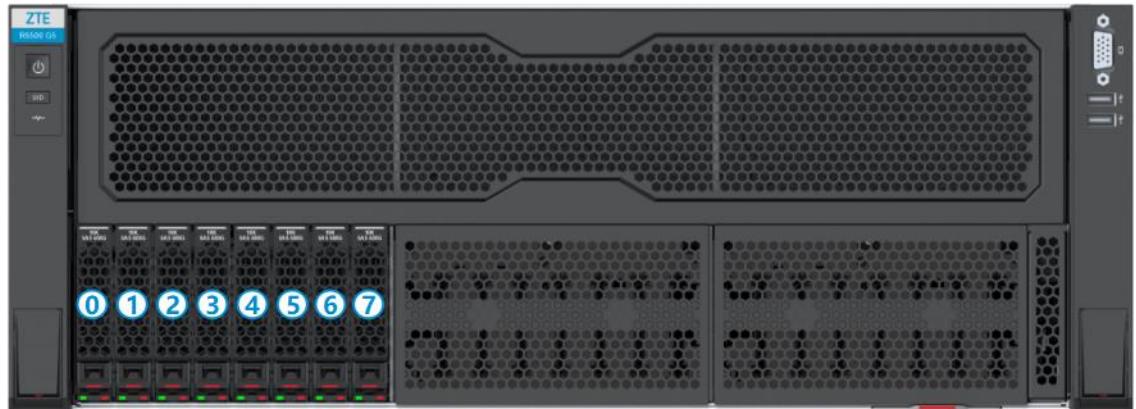

4.1 Hard Disk Slot

The NCS6742G N4 server supports installation of hard disks on its front panel. In accordance with the layout (horizontal and vertical) and number of hard disks, the NCS6742G N4 server provides the following hard disk configuration modes:

- Horizontal layout (24 hard disks)

Figure 4-1 shows the hard disk slots arranged when 24 hard disks are installed horizontally.

Figure 4-1 Horizontal Layout (24 Hard Disk Slots)

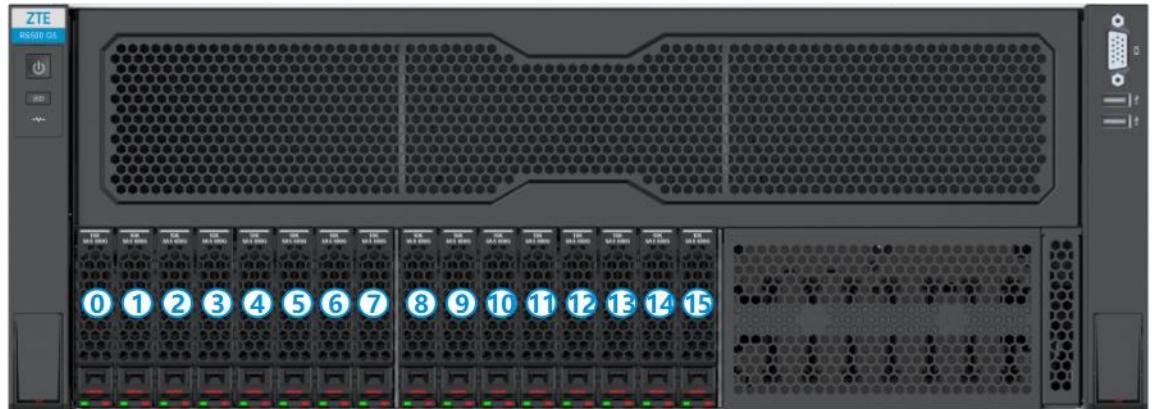


All slots support [SAS/SATA](#) hard disks. In addition, slots 0–7 also support [NVMe](#) hard disks.

- Vertical layout (8 hard disks)

Figure 4-2 shows the hard disk slots arranged when 8 hard disks are installed vertically.

Figure 4-2 Vertical Layout (8 Hard Disk Slots)

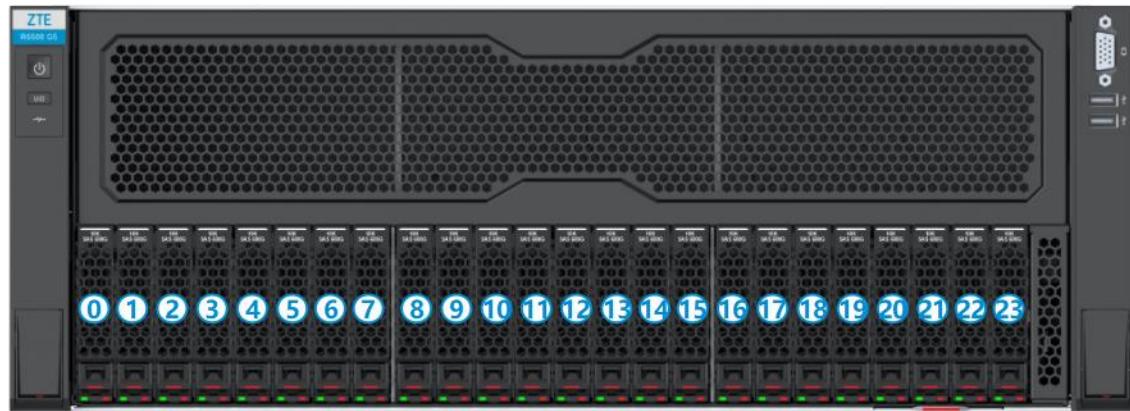


All slots support SAS/SATA/NVMe hard disks.

- Vertical layout (16 hard disks)

Figure 4-3 shows the hard disk slots arranged when 16 hard disks are installed vertically.

Figure 4-3 Vertical Layout (16 Hard Disk Slots)

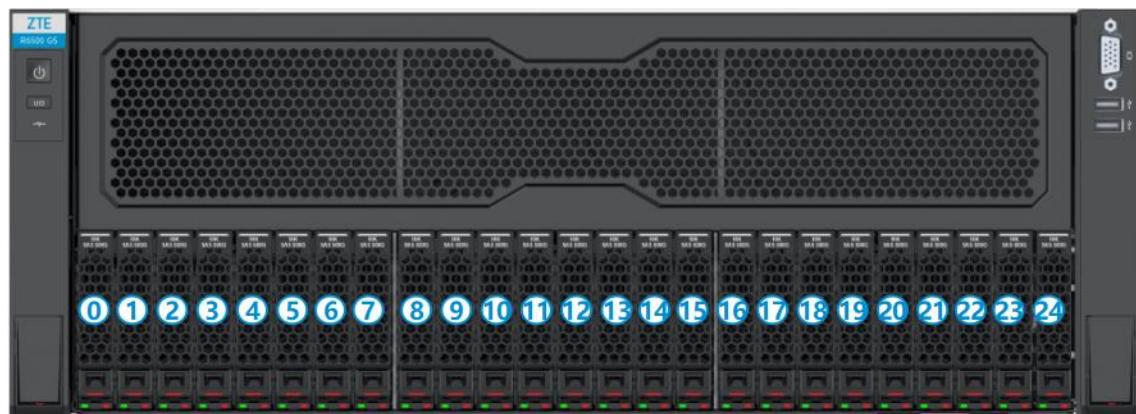


All slots support SAS/SATA hard disks. In addition, slots 0–11 also support NVMe hard disks.

- Vertical layout (24 hard disks)

Figure 4-4 shows the hard disk slots arranged when 24 hard disks are installed vertically.

Figure 4-4 Vertical Layout (24 Hard Disk Slots)



All slots support SAS/SATA hard disks. In addition, slots 0–11 also support NVMe hard disks.

- Vertical layout (25 hard disks)

Figure 4-5 shows the hard disk slots arranged when 25 hard disks are installed vertically.

Figure 4-5 Vertical Layout (25 Hard Disk Slots)

All slots support SAS/SATA hard disks. In addition, slots 1, 3, 5, 7, 17, 19, 21, and 23 also support NVMe hard disks.

To ensure drive availability, the storage duration of a hard disk drive cannot exceed six months before use.

4.2 Hard Disk Indicator

Figure 4-6 shows the hard disk indicators on the NCS6742G N4 server.

Figure 4-6 Hard Disk Indicators

1. Hard disk status indicator
2. Hard disk activity indicator

For a description of the hard disk indicators, refer to [Table 4-1](#).

Table 4-1 Hard Disk Indicator Descriptions

Indicator	Status
Hard disk status indicator	The possible status of the indicator is one of the following: <ul style="list-style-type: none"> ● Off: The hard disk is operating properly. ● Flashing blue at 1 Hz: The RAID group that the hard disk belongs to is being rebuilt. ● Flashing blue at 4 Hz: The hard disk is being positioned. ● Steady red: The hard disk is faulty.
Hard disk activity indicator	The possible status of the indicator is one of the following: <ul style="list-style-type: none"> ● Off: The hard disk is not present or is faulty. ● Flashing green: Data is being read from or written to the hard disk, or synchronized between hard disks. (The indicator flashes green at 4 Hz on a SAS/SATA disk and flashes green at an undefined frequency on an NVMe disk.) ● Steady green: The hard disk is present but inactive.

4.3 RAID Controller Card

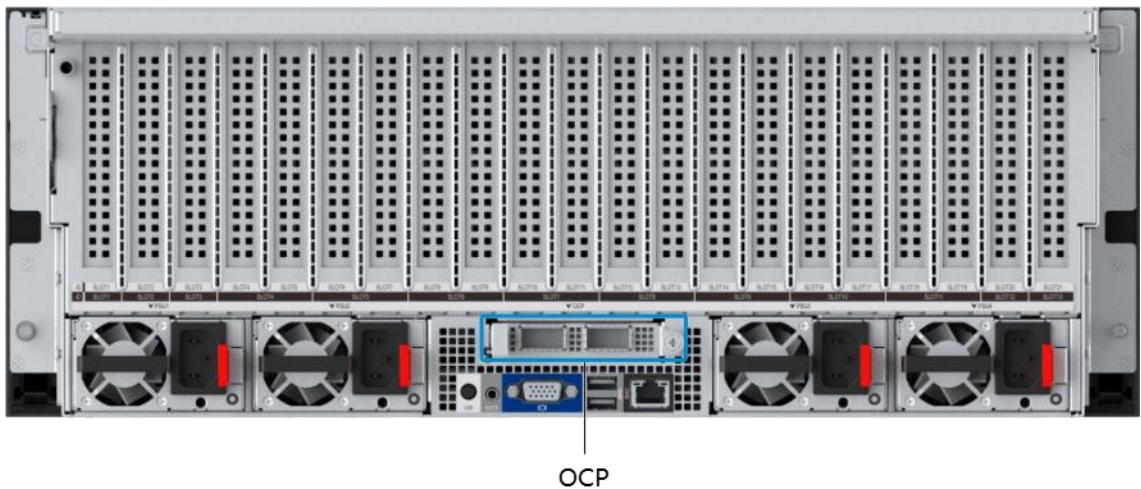
Through a [RAID](#) controller card of the corresponding model, the [RAID](#) technology combines multiple independent hard disks to form an array with the redundancy capability. Compared with a single hard disk, the [RAID](#) array provides higher storage performance, [I/O](#) performance, and reliability.

The [RAID](#) controller card provides the functions such as [RAID](#) support, [RAID](#) level migration, and disk roaming.

For detailed information about [RAID](#) controller cards, refer to the *NETAS Server [RAID](#) User Guide (Intel EagleStream)*.

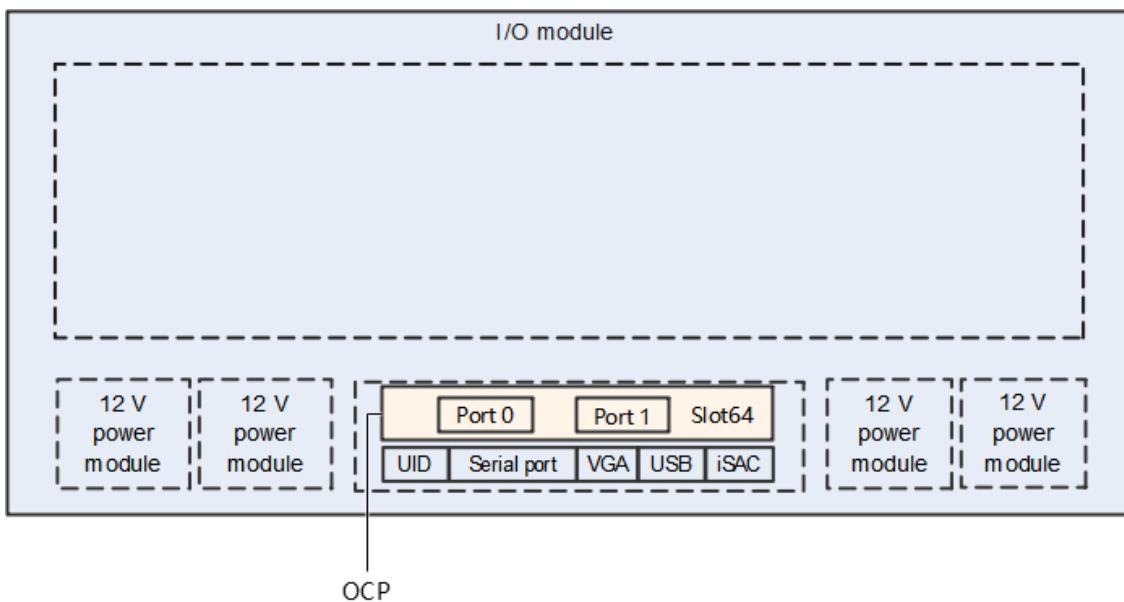
Chapter 5

Network


Table of Contents

OCP NIC.....	34
PCIe NIC	36

5.1 OCP NIC


The NCS6742G N4 server supports [OCP NICs](#) to provide more network capabilities. [Figure 5-1](#) shows the position of the OCP NICs.

[Figure 5-1 OCP NIC Position](#)

The port names of an OCP NIC configured for the NCS6742G N4 server are usually determined by the [BIOS](#). Some [OSs](#) support customization of the port names. By default, a port name of an OCP NIC configured for the NCS6742G N4 server is `ensxy`. In the port name, `x` indicates the slot ID of the OCP NIC and `y` indicates the port ID. (The left port of the OCP NIC is numbered 0, which is incremented by one on the right.)

[Figure 5-2](#) shows the IDs of the ports provided by each OCP NIC when the NCS6742G N4 server is configured with OCP NICs that have two optical interfaces each.

Figure 5-2 OCP NIC Configuration

In [Figure 5-2](#), the ports of the OCP NIC located in slot 64 are named `ens64f0` and `ens64f1`.

For the OCP NIC models that the NCS6742G N4 server supports, refer to [Table 5-1](#).

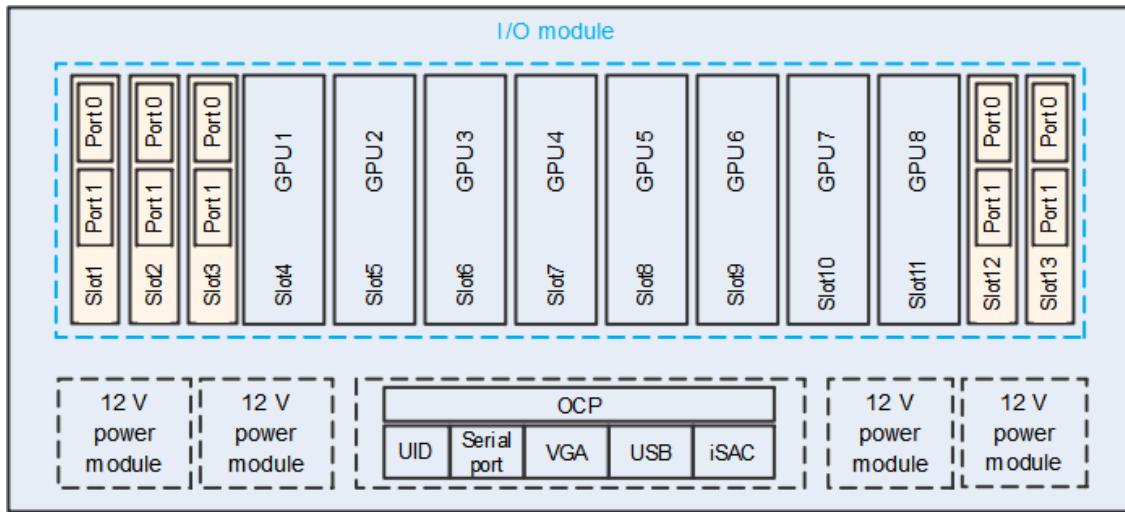
Table 5-1 Supported OCP NIC Models

OCP NIC Model	Network Port Type	Number of Network Ports	Rate	NC-SI/WOL/PXE Supported Or Not
E810-XXVDA2 (983263)	Optical interface	2	25 Gbps	Supported
X710DA2	Optical interface	2	10 Gbps	Supported
X710T2L	Electrical interface	2	10 Gbps	Supported
MCX562A-ACAB	Optical interface	2	25 Gbps	Supported
MCX566A-CDAB	Optical interface	2	100 Gbps	Supported
MCX4621A-XCAB	Optical interface	2	10 Gbps	Supported
MCX623436AN-CDAB	Optical interface	2	100 Gbps	Supported

Note

The number of OCP NIC models supported by the NCS6742G N4 server is growing. For more information, contact technical support.

5.2 PCIe NIC


A [PCIe NIC](#) is a network adapter that provides PCIe ports. It is connected to the mainboard through a PCIe port.

The NCS6742G N4 server supports PCIe NICs to provide more network capabilities.

The port names of a PCIe NIC configured for the NCS6742G N4 server are usually determined by the [BIOS](#). Some [OSs](#) support customization of the port names. By default, a port name of a PCIe NIC configured for the NCS6742G N4 server is `ensxy`. In the port name, **x** indicates the slot ID of the PCIe NIC and **y** indicates the port ID. (The port far away from the gold finger of the PCIe NIC is numbered 0, which is incremented by one as the distance shortens.)

[Figure 5-3](#) shows the IDs of the ports provided by each PCIe NIC when the NCS6742G N4 server is configured with PCIe NICs that have two optical interfaces each.

Figure 5-3 Typical PCIe NIC Configuration

In [Figure 5-3](#), the ports of the PCIe NIC located in slot 1 are named `ens1f0` and `ens1f1`.

PCIe NICs support smart NICs and common NICs.

- For the smart NIC models that the NCS6742G N4 server supports, refer to [Table 5-2](#).

Table 5-2 Supported Smart NIC Models

Smart NIC Model	Network Port Type	Number of Network Ports	Rate	Supported PCIe Rate
MBF2H512C-AEUOT	Optical interface	2	25 Gbps	PCIe 4.0 x16
MBF2H516A-CENOT	Optical interface	2	100 Gbps	PCIe 4.0 x16
MBF2H516C-CESOT	Optical interface	2	100 Gbps	PCIe 4.0 x16

Note

The number of smart NIC models supported by the NCS6742G N4 server is growing. For more information, contact technical support.

- For the common NIC models that the NCS6742G N4 server supports, refer to [Table 5-3](#).

Table 5-3 Supported Common NIC Models

Common NIC Model	Network Port Type	Number of Network Ports	Rate	Supported PCIe Rate
NS214	Optical interface	2	10 Gbps	PCIe 3.0 x8
NS312	Optical interface	2	25 Gbps	PCIe 3.0 x8
NS212	Optical interface	2	25 Gbps	PCIe 3.0 x8
Intel I350T2G2P20 (934607)	Electrical interface	2	1 Gbps	PCIe 2.0 x4
Intel I350T4G2P20 (934608)	Electrical interface	4	1 Gbps	PCIe 2.0 x4

Note

The number of common NIC models supported by the NCS6742G N4 server is growing. For more information, contact technical support.

Chapter 6

I/O Expansion

Table of Contents

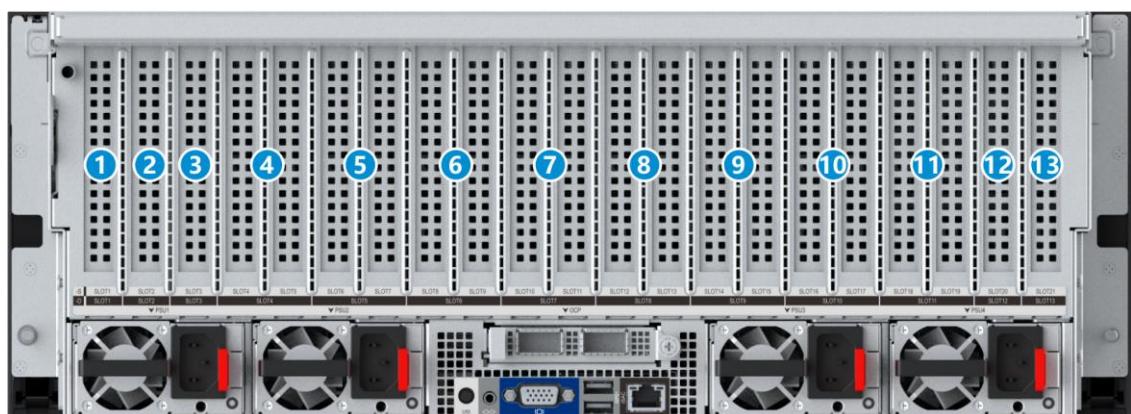
PCIe Card.....	38
PCIe Card Slots and Descriptions.....	38

6.1 PCIe Card

PCIe cards are connected to the mainboard through the PCIe switch board to provide system expansion capabilities. PCIe cards can be configured as required.

Note

- For a description of the PCIe switch board, refer to [9.3 Switch Boards](#).
- For a description of the mainboard, refer to [9.2 Mainboard](#).


6.2 PCIe Card Slots and Descriptions

The I/O module of the NCS6742G N4 server supports the following configurations:

- 13 PCIe 4.0/5.0 slots

[Figure 6-1](#) shows the PCIe card slots of the NCS6742G N4server with this configuration.

Figure 6-1 13 PCIe 4.0/5.0 Slots

The numbers in [Figure 6-1](#) indicate PCIe slot IDs.


For a description of the PCIe card types that can be configured in each slot, refer to [Table 6-1](#).

Table 6-1 PCIe Card Slot Descriptions—13 PCIe 4.0/5.0 Slots

Configuration Mode	Slot ID	PCIe Card Type
10 dual-slot GPUs + 1 single-slot standard PCIe card	Slot1	Single-slot standard PCIe card
	Slot 2 and Slot 3	Dual-slot GPU
	Slot 4–Slot 11	Dual-slot GPU
	Slot 12 and Slot 13	Dual-slot GPU
8 dual-slot GPUs + 5 single-slot standard PCIe cards	Slot1–Slot3	Single-slot standard PCIe card
	Slot 4–Slot 11	Dual-slot GPU
	Slot 12 and Slot 13	Single-slot standard PCIe card
8 dual-slot GPUs + 1 single-slot smart NIC + 4 single-slot standard PCIe cards	Slot1	Single-slot smart NIC
	Slot 2 and Slot 3	Single-slot standard PCIe card
	Slot 4–Slot 11	Dual-slot GPU
	Slot 12 and Slot 13	Single-slot standard PCIe card
8 dual-slot GPUs + 1 dual-slot smart NIC + 3 single-slot standard PCIe cards	Slot 1 and Slot 2	Dual-slot smart NIC
	Slot3	Single-slot standard PCIe card
	Slot 4–Slot 11	Dual-slot GPU
	Slot 12 and Slot 13	Single-slot standard PCIe card

- 21 PCIe 4.0 slots

[Figure 6-2](#) shows the PCIe card slots of the server with this configuration.

Figure 6-2 21 PCIe 4.0 Slots**Note**

The numbers in [Figure 6-2](#) indicate PCIe slot IDs.

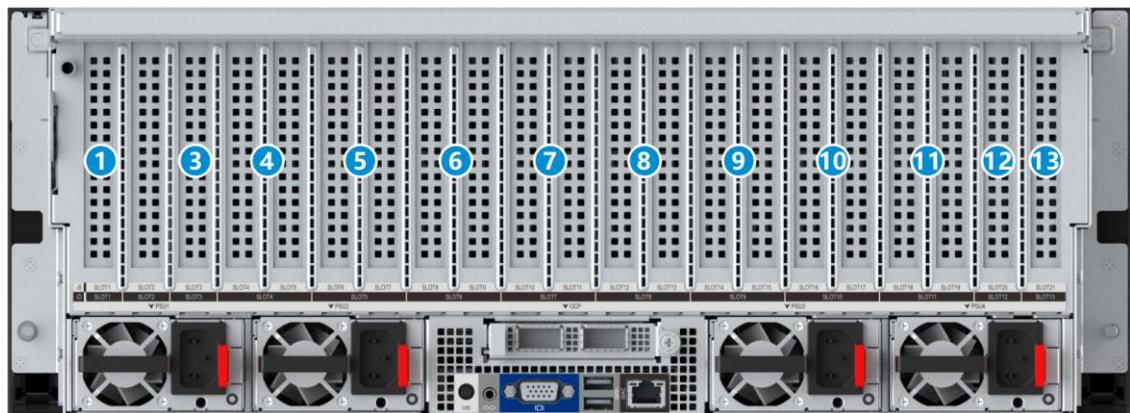

For a description of the PCIe card types that can be configured in each slot, refer to [Table 6-2](#).

Table 6-2 PCIe Card Slot Descriptions—21 PCIe 4.0 Slots

Configuration Mode	Slot ID	PCIe Card Type
16 dual-slot GPUs + 5 single-slot standard PCIe cards	Slot 1–Slot 3	Single-slot standard PCIe card
	Slot 4–Slot 19	Single-slot GPU
	Slot 20 and Slot 21	Single-slot standard PCIe card

- 12 PCIe 5.0 slots

[Figure 6-3](#) shows the PCIe card slots of the server with this configuration.

Figure 6-3 12 PCIe 5.0 Slots

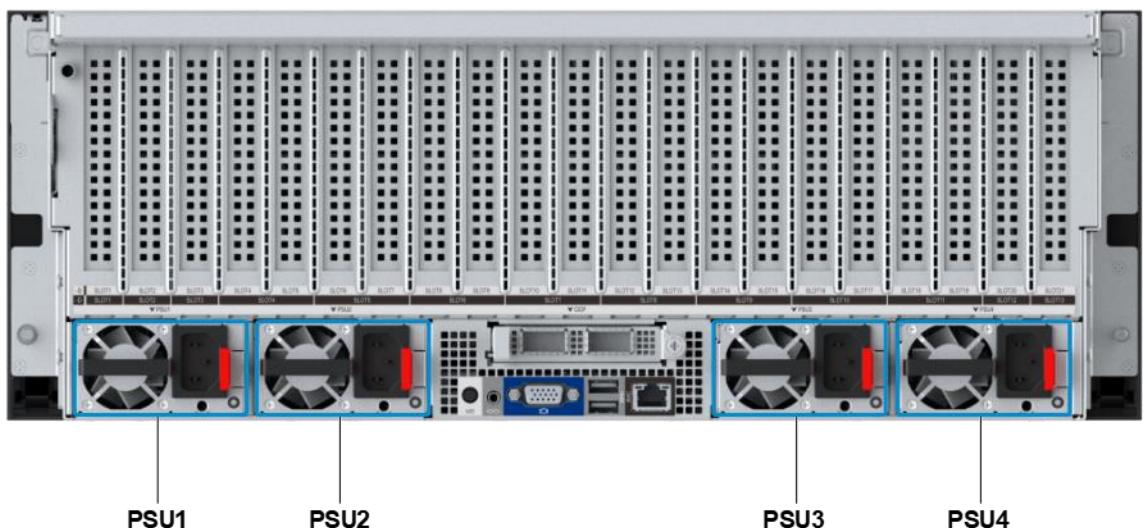
Note

Compared with the configuration with 13 PCIe 4.0/5.0 slots, the only difference is that Slot 2 is unavailable in the configuration with 12 PCIe 5.0 slots.

For a description of the PCIe card types that can be configured in each slot, refer to [Table 6-3](#).

Table 6-3 PCIe Card Slot Descriptions—12 PCIe 5.0 Slots

Configuration Mode	Slot ID	PCIe Card Type
8 single-slot/dual-slot GPUs + 4 single-slot standard PCIe cards	Slot 1 and Slot 3	Single-slot standard PCIe card
	Slot 4–Slot 11	Single-slot/dual-slot GPU
	Slot 12 and Slot 13	Single-slot standard PCIe card


Chapter 7

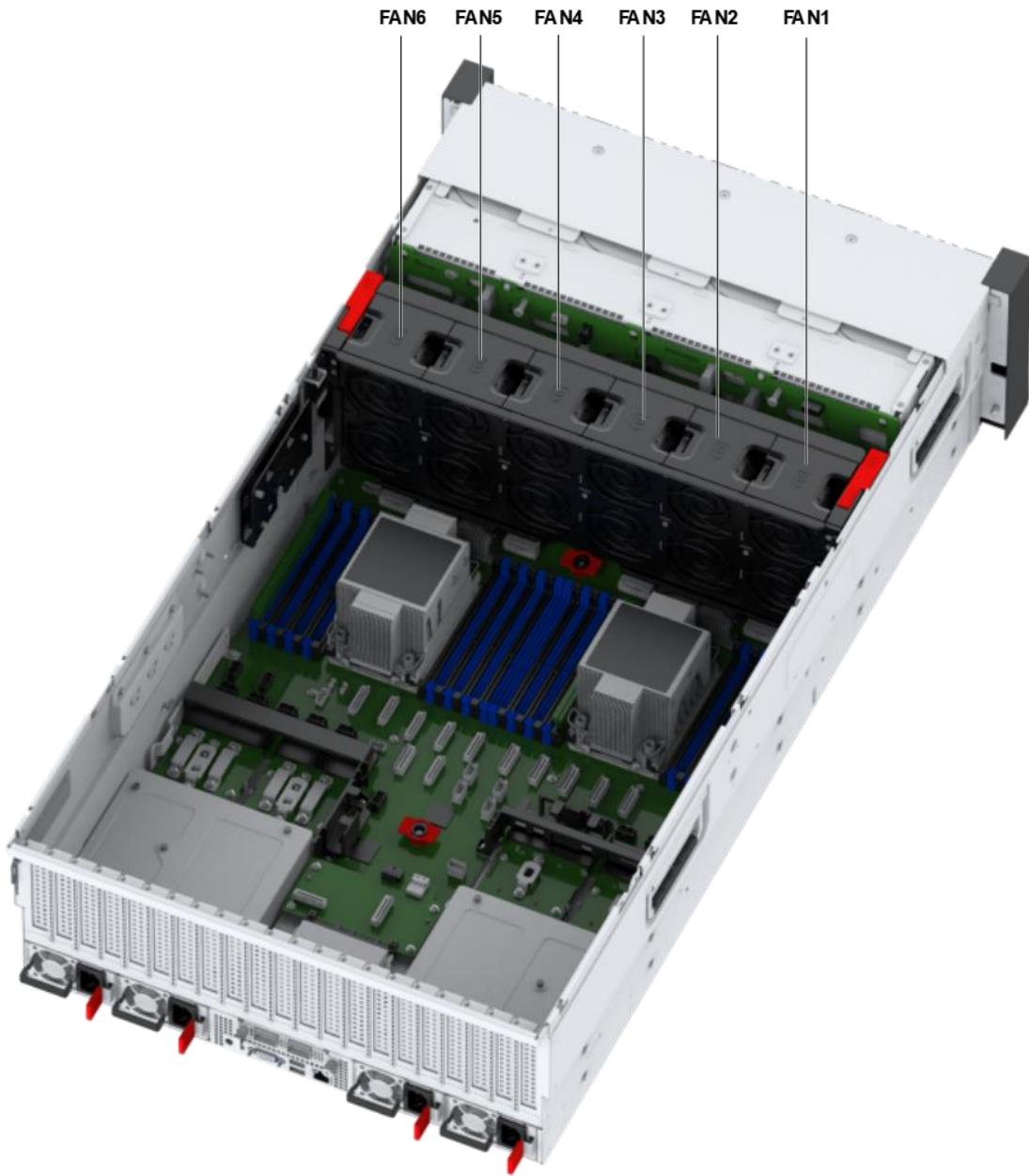
Power Module

[Figure 7-1](#) shows the positions of the power modules on the NCS6742G N4 server.

Figure 7-1 Power Module Positions

The power module configurations of the NCS6742G N4 server are described as follows:

- Various types of power modules (for example, 800 W, 1300 W, 2000 W, 2700 W, and 3200 W), including platinum power modules, are supported.
- The 100 V–127 V and 200 V–240 V (50 Hz to 60 Hz) [AC](#) power input is supported.
- The 240 V and 336 V high-voltage [DC](#) power input is supported.
- The –48 V low-voltage DC power input is supported.
- Two or four power modules are supported.
- Hot swapping is supported.
- The 2+2 redundancy mode is supported when four power modules are configured.
- The power modules installed on the same server must be of the same model.
- The power modules are protected against short circuits.


Chapter 8

Fan Unit

[Figure 8-1](#) shows the positions of fan units on the NCS6742G N4 server.

Figure 8-1 Fan Unit Positions

The fan unit configurations of the NCS6742G N4 server are described as follows:

- Six fan units (FAN1–FAN6) are supported, and each fan unit consists of two fans.
 - ➔ FAN1: The two fans are numbered 1 and 2 from top to bottom.
 - ➔ FAN2: The two fans are numbered 3 and 4 from top to bottom.
 - ➔ FAN3: The two fans are numbered 5 and 6 from top to bottom.
 - ➔ FAN4: The two fans are numbered 7 and 8 from top to bottom.
 - ➔ FAN5: The two fans are numbered 9 and 10 from top to bottom.
 - ➔ FAN6: The two fans are numbered 11 and 12 from top to bottom.

- The server supports two fan specifications: 8038 and 8056.

Note

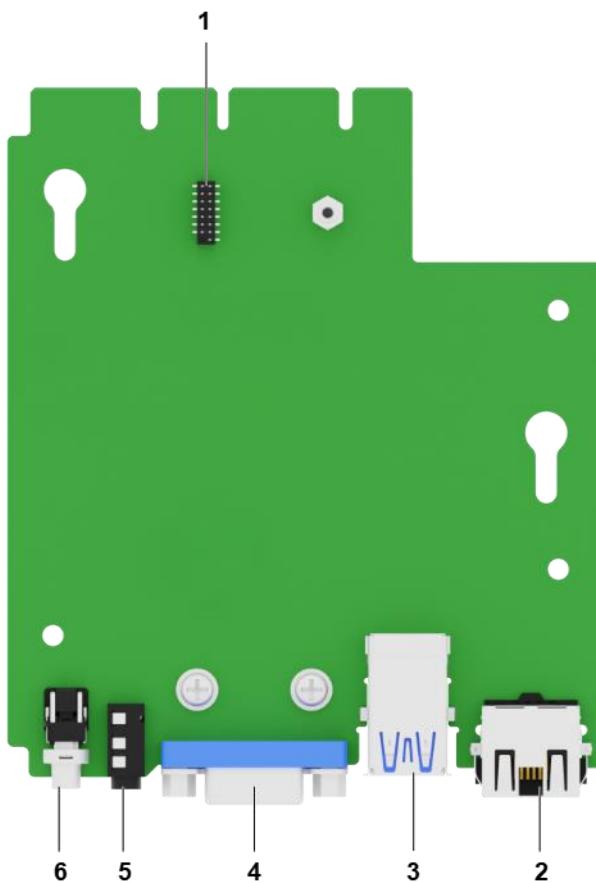
The fans installed on a server must be of the same model and specification.

- Hot swapping is supported.
- If a fan fails, the corresponding fan unit can still operate properly.
- The fan speed is adjustable.

Chapter 9

Boards

Table of Contents


I/O Card	46
Mainboard.....	47
Switch Boards.....	51
Disk Backplane	59

9.1 I/O Card

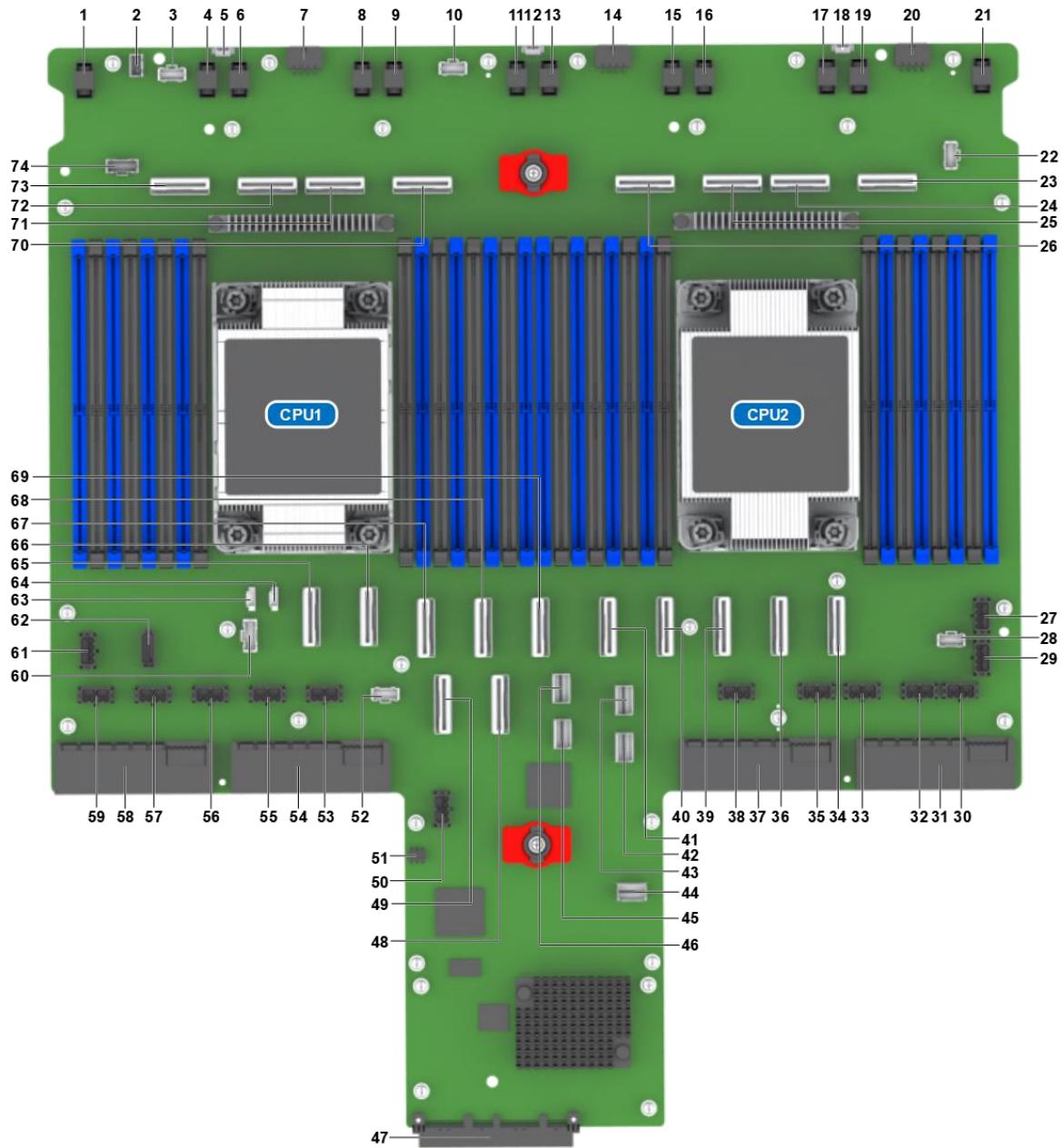
CPUs communicate with other devices through interfaces. Different devices have different interfaces, which are called **I/O** interfaces.

An I/O card is connected to the mainboard, and provides a network interface, **VGA** interface, and **USB** interfaces for external devices.

Figure 9-1 shows the I/O card of the NCS6742G N4 server.

Figure 9-1 I/O Card

For a description of the interfaces on the I/O card of the NCS6742G N4 server, refer to [Table 9-1](#).


Table 9-1 I/O Card Interface Descriptions

No.	Interface Name	Silk Screen	Position Number
1	TPM card interface	TPM CARD	X2
2	BMC management network port	BMC_ETH	X4
3	USB 3.0 interface x 2	USB1/USB2	X6
4	VGA interface	VGA	X7
5	3.5mm audio jack	COM	X3
6	UID button and indicator	UID	S1

9.2 Mainboard

[Figure 9-2](#) shows the mainboard of the NCS6742G N4 server.

Figure 9-2 Mainboard

For a description of the interfaces on the mainboard of the NCS6742G N4, refer to [Table 9-2](#).

Table 9-2 Mainboard Interface Descriptions

No.	Interface Name	Silk Screen	Position Number
1	Fan unit interface 12	FAN12	X79
2	Intrusion detection switch interface	INTRUDER	X43
3	Disk backplane retimer interface	RETIMER_CARD	X40
4	Fan unit interface 11	FAN11	X59

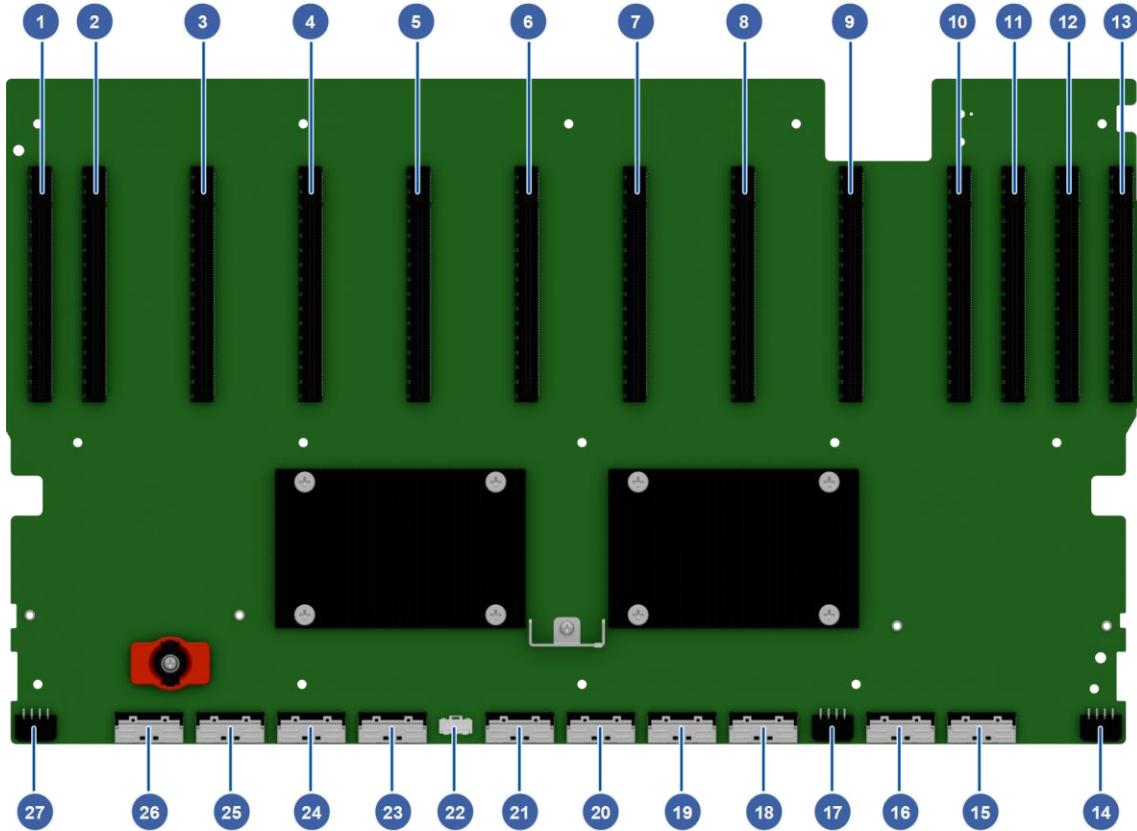
No.	Interface Name	Silk Screen	Position Number
5	Disk backplane I2C interface 3	I2C_BP3	X12
6	Fan unit interface 10	FAN10	X81
7	Disk backplane power interface 3	P12V_BP3	X21
8	Fan unit interface 9	FAN9	X80
9	Fan unit interface 8	FAN8	X66
10	Disk backplane expansion interface	EXPANDER	X84
11	Fan unit interface 7	FAN7	X68
12	Disk backplane I2C interface 2	I2C_BP2	X25
13	Fan unit interface 6	FAN6	X67
14	Disk backplane power interface 2	P12V_BP2	X19
15	Fan unit interface 5	FAN5	X69
16	Fan unit interface 4	FAN4	X63
17	Fan unit interface 3	FAN3	X65
18	Disk backplane I2C interface 1	I2C_BP1	X22
19	Fan unit interface 2	FAN2	X64
20	Disk backplane power interface 1	P12V_BP1	X17
21	Fan unit interface 1	FAN1	X62
22	Left lug interface	FP_BIN/LED	X45
23	NVMe SSD PCIe x8 interface	CPU2_HSIO8	X13
24	NVMe SSD PCIe x8 interface	CPU2_HSIO7	X18
25	NVMe SSD PCIe x8 interface	CPU2_HSIO6	X50
26	NVMe SSD PCIe x8 interface	CPU2_HSIO5	X49
27	RAID controller card power interface	P12V_RAID	X74
28	RAID controller card communication interface	LINK_RAID	X15
29	Switch board power interface	P12V_SW2	X78
30	Power interface 10 (co-shared by the GPU and the PCIe switch board)	P12V_GPU10_SW4	X72
31	PSU interface 4	PSU4	X4A2
32	GPU power interface 8	P12V_GPU8	X71

No.	Interface Name	Silk Screen	Position Number
33	GPU power interface 7	P12V_GPU7	X26
34	PCIe x8 interface for the GPU on the PCIe switch board	CPU2_HSIO16	X54
35	GPU power interface 6	P12V_GPU6	X6
36	PCIe x8 interface for the GPU on the PCIe switch board	CPU2_HSIO15	X53
37	PSU interface 3	PSU3	X3A2
38	GPU power interface 5	P12V_GPU5	X10
39	PCIe x8 interface for the GPU on the PCIe switch board	CPU2_HSIO14	X70
40	PCIe x8 interface for the GPU on the PCIe switch board	CPU2_HSIO13	X55
41	RAID controller card PCIe x8 interface	CPU2_HSIO18	X28
42	SATA interface 1	PCH_SATA1	X52
43	SATA interface 2	PCH_SATA2	X3
44	OCP card NCSI	NCSI_OCP	X16
45	SATA interface 3	PCH_SATA3	X23
46	M.2 interface	PCH_SATA4_M2	X83
47	I/O card interface	IO_CARD	X24
48	RAID controller card PCIe x8 interface	CPU2_HSIO20	X58
49	OCP card PCIe x8 interface	CPU1_HSIO19	X56
50	OCP card power interface	P12V_OCP	X57
51	Commissioning interface	-	X1A4
52	Switch board communication interface	LINK_SW	X76
53	GPU power interface 4	P12V_GPU4	X5
54	PSU interface 2	PSU2	X2A2
55	GPU power interface 3	P12V_GPU3	X2
56	GPU power interface 2	P12V_GPU2	X4
57	GPU power interface 1	P12V_GPU1	X1
58	PSU interface 1	PSU1	X1A2

No.	Interface Name	Silk Screen	Position Number
59	Power interface 9 (co-shared by the GPU and the PCIe switch board)	P12V_GPU9_SW3	X60
60	Smart NIC NCSI	NCSI_SMARTNIC	X35
61	Switch board power interface	P12V_SW1	X77
62	USB 3.0/USB 2.0 interface	FP_USB4	X11
63	Commissioning interface	-	X61
64	Commissioning interface	-	X31
65	PCIe x8 interface for the GPU on the PCIe switch board	CPU1_HSIO9	X46
66	PCIe x8 interface for the GPU on the PCIe switch board	CPU1_HSIO10	X42
67	OCP card PCIe x8 interface	CPU1_HSIO17	X36
68	PCIe x8 interface for the GPU on the PCIe switch board	CPU1_HSIO11	X41
69	PCIe x8 interface for the GPU on the PCIe switch board	CPU1_HSIO12	X44
70	NVMe SSD PCIe x8 interface	CPU1_HSIO4	X8
71	NVMe SSD PCIe x8 interface	CPU1_HSIO3	X47
72	PCIe x8 interface for the smart NIC on the PCIe switch board	CPU1_HSIO2	X48
73	PCIe x8 interface for the smart NIC on the PCIe switch board	CPU1_HSIO1	X14
74	Right lug interface	FP_USB/VGA	X20

9.3 Switch Boards

With a **PCIe** switch board, the server can provide a certain number of **PCIe** card slots for expanding system functions.


The NCS6742G N4 server supports the following PCIe switch boards:

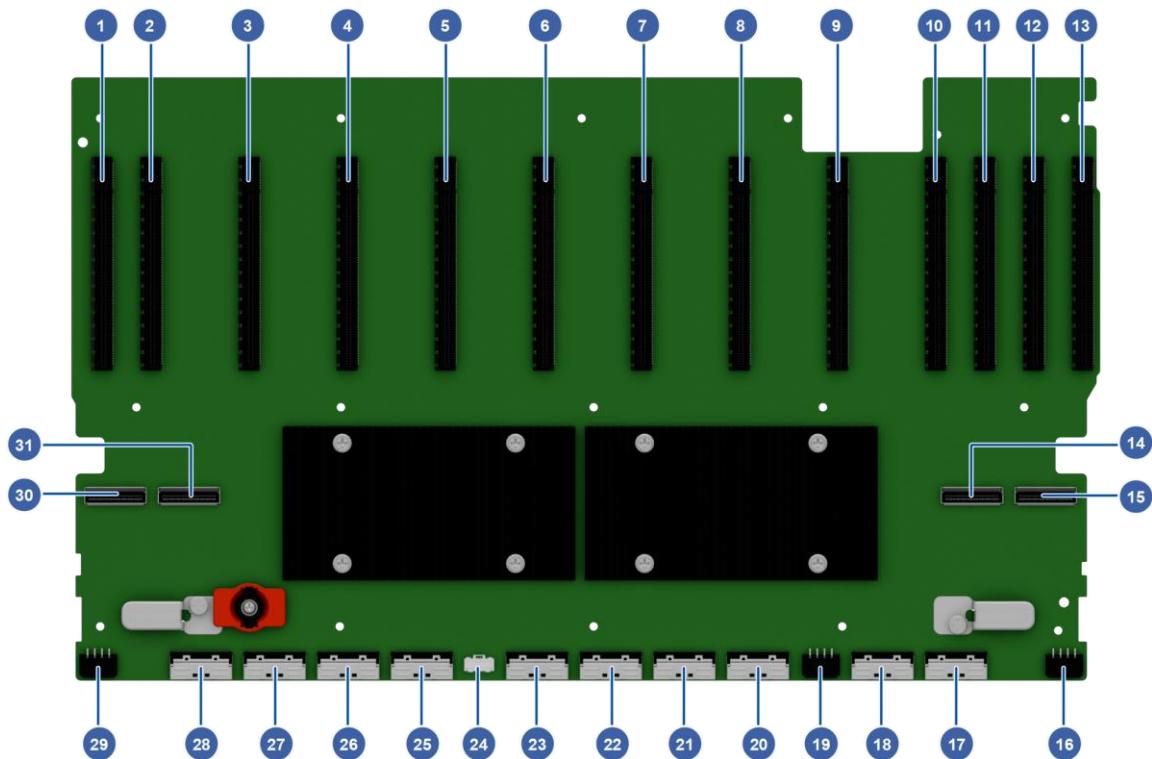
- 13-slot PCIe 4.0 switch board SWP65N40A. For details, refer to [9.3.1 SWP65N40A](#).
- 13-slot PCIe 5.0 switch board SW6505P5A. For details, refer to [9.3.2 SW6505P5A](#).
- 21-slot PCIe 4.0 switch board SWP65N41A. For details, refer to [9.3.3 SWP65N41A](#).
- 12-slot PCIe 4.0 pass-through board SW6505PT4A. For details, refer to [9.3.4 SW6505PT4A](#).

9.3.1 SWP65N40A

Figure 9-3 shows the 13-slot PCIe 4.0 switch board SWP65N40A.

Figure 9-3 SWP65N40A

For a description of the interfaces on the 13-slot PCIe 4.0 switch board SWP65N40A, refer to [Table 9-3](#).


Table 9-3 SWP65N40A Interface Descriptions

No.	Interface Name	Silk Screen	Position Number
1	PCIe interface 13	SLOT 13	X26
2	PCIe interface 12	SLOT 12	X25
3	PCIe interface 11	SLOT 11	X21
4	PCIe interface 10	SLOT 10	X20
5	PCIe interface 9	SLOT 9	X19
6	PCIe interface 8	SLOT 8	X18
7	PCIe interface 7	SLOT 7	X17
8	PCIe interface 6	SLOT 6	X16
9	PCIe interface 5	SLOT 5	X15

No.	Interface Name	Silk Screen	Position Number
10	PCIe interface 4	SLOT 4	X14
11	PCIe interface 3	SLOT 3	X23
12	PCIe interface 2	SLOT 2	X22
13	Smart NIC PCIe interface 1	SLOT 1/PCIe GEN5	X24
14	Power interface 1	P12V_SW1	X12
15	PCIe x8 interface 0	SW_HSIO_0	X5
16	PCIe x8 interface 1	SW_HSIO_1	X7
17	Smart NIC power cable interface	P12V_SMARTNIC	X29
18	PCIe x8 interface 2	SW_HSIO_2	X4
19	PCIe x8 interface 3	SW_HSIO_3	X2
20	PCIe x8 interface 4	SW_HSIO_4	X1
21	PCIe x8 interface 5	SW_HSIO_5	X3
22	Data communication interface	LINK_SW	X11
23	PCIe x8 interface 6	SW_HSIO_6	X8
24	PCIe x8 interface 7	SW_HSIO_7	X6
25	PCIe x8 interface 8	SW_HSIO_8	X9
26	PCIe x8 interface 9	SW_HSIO_9	X10
27	Power interface 2	P12V_SW2	X13

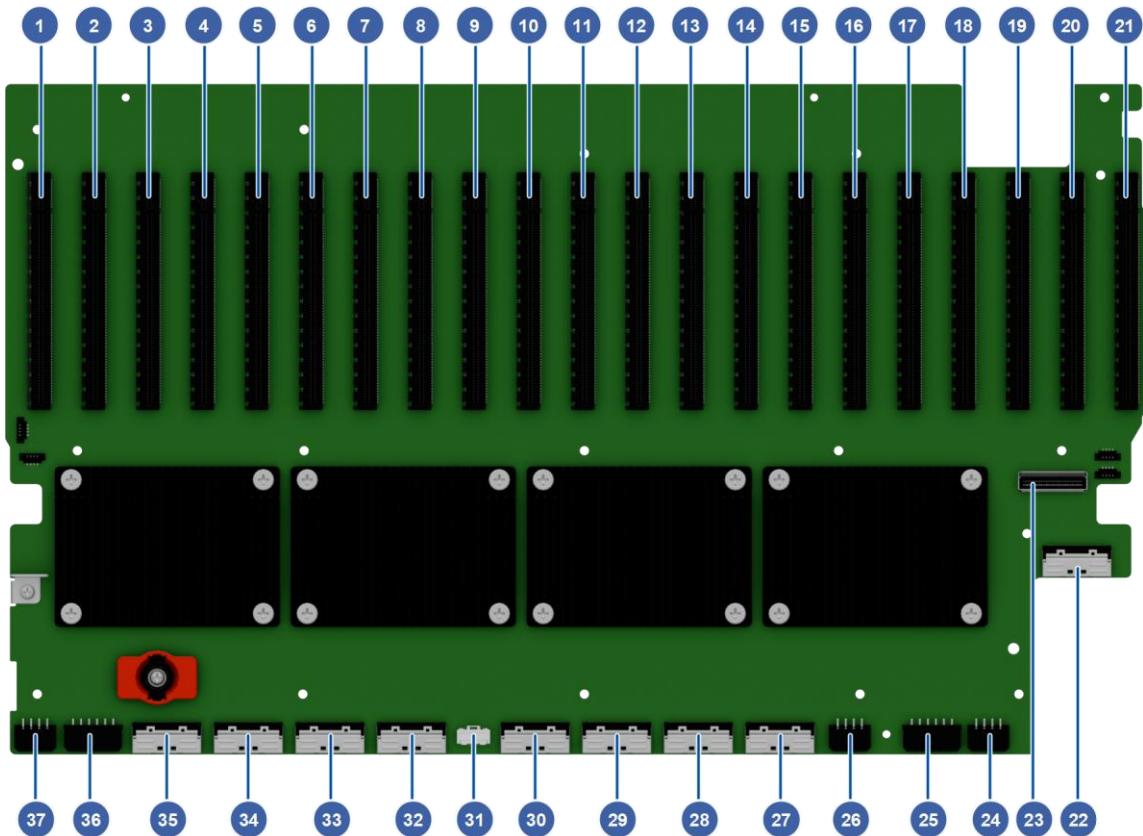
9.3.2 SW6505P5A

Figure 9-4 shows the 13-slot PCIe 5.0 switch board SW6505P5A.

Figure 9-4 SW6505P5A

For a description of the interfaces on the 13-slot PCIe 5.0 switch board SW6505P5A, refer to [Table 9-4](#).

Table 9-4 SW6505P5A Interface Descriptions


No.	Interface Name	Silk Screen	Position Number
1	PCIe interface 13	SLOT 13/PCIE GEN5/X16	X26
2	PCIe interface 12	SLOT 12/PCIE GEN5/X16	X25
3	PCIe interface 11	SLOT 11/PCIE GEN5/X16	X21
4	PCIe interface 10	SLOT 10/PCIE GEN5/X16	X20
5	PCIe interface 9	SLOT 9/PCIE GEN5/X16	X19
6	PCIe interface 8	SLOT 8/PCIE GEN5/X16	X18
7	PCIe interface 7	SLOT 7/PCIE GEN5/X16	X17
8	PCIe interface 6	SLOT 6/PCIE GEN5/X16	X16
9	PCIe interface 5	SLOT 5/PCIE GEN5/X16	X15
10	PCIe interface 4	SLOT 4/PCIE GEN5/X16	X14
11	PCIe interface 3	SLOT 3/PCIE GEN5/X16	X23
12	PCIe interface 2	SLOT 2/PCIE GEN5/X16	X22

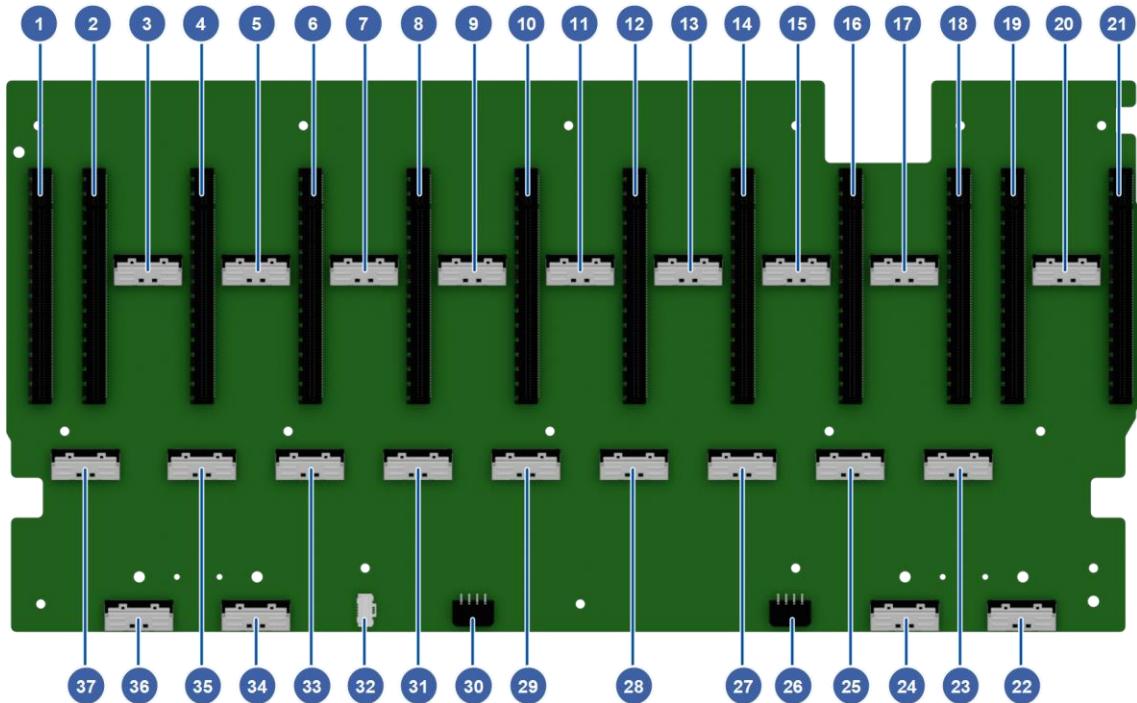
No.	Interface Name	Silk Screen	Position Number
13	Smart NIC PCIe interface 1	SLOT 1/PCIE GEN5/X16	X24
14	PCIe x8 interface 0	SW_HSIO_0	X5
15	PCIe x8 interface 1	SW_HSIO_1	X7
16	Power interface 1	P12V_SW1	X12
17	PCIe x8 interface 2	SW_HSIO_2	X4
18	PCIe x8 interface 3	SW_HSIO_3	X2
19	Smart NIC power cable interface	P12V_SMARTNIC	X29
20	PCIe x8 interface 4	SW_HSIO_4	X1
21	PCIe x8 interface 5	SW_HSIO_5	X3
22	PCIe x8 interface 6	SW_HSIO_6	X6
23	PCIe x8 interface 7	SW_HSIO_7	X8
24	Data communication interface	LINK_SW	X11
25	PCIe x8 interface 8	SW_HSIO_8	X9
26	PCIe x8 interface 9	SW_HSIO_9	X47
27	PCIe x8 interface 10	SW_HSIO_10	X54
28	PCIe x8 interface 11	SW_HSIO_11	X55
29	Power interface 2	P12V_SW2	X13
30	PCIe x8 interface 13	SW_HSIO_13	X48
31	PCIe x8 interface 12	SW_HSIO_12	X10

9.3.3 SWP65N41A

Figure 9-5 shows the 21-slot PCIe 4.0 switch board SWP65N41A.

Figure 9-5 SWP65N41A

For a description of the interfaces on the 21-slot PCIe 4.0 switch board SWP65N41A, refer to [Table 9-5](#).


Table 9-5 SWP65N41A Interface Descriptions

No.	Interface Name	Silk Screen	Position Number
1	PCIe interface 21	SLOT 21/X16	X26
2	PCIe interface 20	SLOT 20/X16	X25
3	PCIe interface 19	SLOT 19/X16	X41
4	PCIe interface 18	SLOT 18/X16	X40
5	PCIe interface 17	SLOT 17/X16	X37
6	PCIe interface 16	SLOT 16/X16	X36
7	PCIe interface 15	SLOT 15/X16	X43
8	PCIe interface 14	SLOT 14/X16	X42
9	PCIe interface 13	SLOT 13/X16	X45
10	PCIe interface 12	SLOT 12/X16	X44
11	PCIe interface 11	SLOT 11/X16	X21

No.	Interface Name	Silk Screen	Position Number
12	PCIe interface 10	SLOT 10/X16	X20
13	PCIe interface 9	SLOT 9/X16	C19
14	PCIe interface 8	SLOT 8/X16	X18
15	PCIe interface 7	SLOT 7/X16	X17
16	PCIe interface 6	SLOT 6/X16	X16
17	PCIe interface 5	SLOT 5/X16	X15
18	PCIe interface 4	SLOT 4/X16	X14
19	PCIe interface 3	SLOT 3/X16	X23
20	PCIe interface 2	SLOT 2/X16	X22
21	Smart NIC PCIe interface 1	SLOT 1/PCIe GEN5/X16	X24
22	PCIe x8 interface 1	SW_HSIO_1	X7
23	PCIe x8 interface 0	SW_HSIO_0	X73
24	Power interface 1	P12V_SW1	X12
25	Power interface 3	P12V_GPU_SW3	X70
26	Smart NIC power cable interface	P12V_SMARTNIC	X29
27	PCIe x8 interface 2	SW_HSIO_2	X4
28	PCIe x8 interface 3	SW_HSIO_3	X2
29	PCIe x8 interface 4	SW_HSIO_4	X1
30	PCIe x8 interface 5	SW_HSIO_5	X3
31	Data communication interface	LINK_SW	X11
32	PCIe x8 interface 6	SW_HSIO_6	X8
33	PCIe x8 interface 7	SW_HSIO_7	X6
34	PCIe x8 interface 8	SW_HSIO_8	X9
35	PCIe x8 interface 9	SW_HSIO_9	X10
36	Power interface 4	P12V_GPU_SW4	X71
37	Power interface 2	P12V_SW2	X13

9.3.4 SW6505PT4A

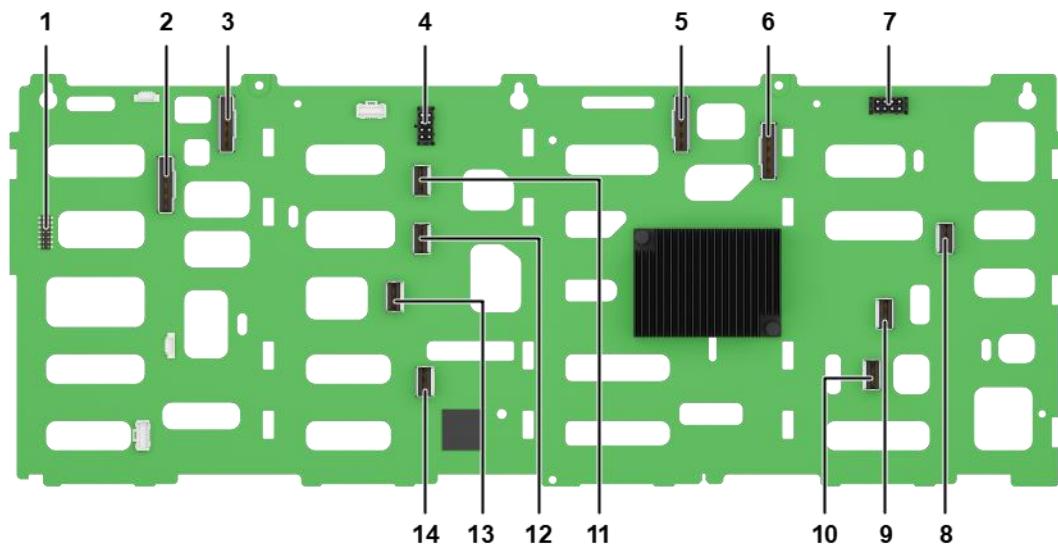
Figure 9-6 shows the 12-slot PCIe 5.0 pass-through board SW6505PT4A.

Figure 9-6 SW6505PT4A

For a description of the interfaces on the 12-slot PCIe 5.0 pass-through board SW6505PT4A

Table 9-6.**Table 9-6 SW6505PT4A Interface Descriptions**

No.	Interface Name	Silk Screen	Position Number
1	PCIe interface 13	SLOT 13	X38
2	PCIe interface 12	SLOT 12	X37
3	PCIe x8 interface 17	CPU2_PE3_AB	X21
4	PCIe interface 11	SLOT 11	X36
5	PCIe x8 interface 15	CPU2_PE2_AB	X20
6	PCIe interface 10	SLOT 10 PCIE5	X35
7	PCIe x8 interface 13	CPU2_PE1_AB	X16
8	PCIe interface 9	SLOT 9 PCIE5	X34
9	PCIe x8 interface 11	CPU2_PE0_AB	X17
10	PCIe interface 8	SLOT 8	X33
11	PCIe x8 interface 9	CPU1_PE0_AB	X13
12	PCIe interface 7	SLOT 7	X32
13	PCIe x8 interface 7	CPU1_PE2_AB	X14


No.	Interface Name	Silk Screen	Position Number
14	PCIe interface 6	SLOT 6 PCIE5	X31
15	PCIe x8 interface 5	CPU1_PE1_AB	X9
16	PCIe interface 5	SLOT 5 PCIE5	X30
17	PCIe x8 interface 3	CPU1_PE3_AB	X8
18	PCIe interface 4	SLOT 4	X29
19	PCIe interface 3	SLOT 3	X28
20	PCIe x8 interface 2	CPU1_PE4_AB	X6
21	Smart NIC PCIe interface 1	SLOT 1	X27
22	PCIe x8 interface 1	CPU1_PE4_CD	X5
23	PCIe x8 interface 4	CPU1_PE3_CD	X10
24	PCIe x8 interface 0	CPU1_PE4_AB	X7
25	PCIe x8 interface 6	CPU1_PE1_CD	X11
26	Power interface 1	P12V_SW0	X2
27	PCIe x8 interface 8	CPU1_PE2_CD	X12
28	PCIe x8 interface 10	CPU1_PE0_CD	X15
29	PCIe x8 interface 12	CPU2_PE0_CD	X19
30	Power interface 2	P12V_SW1	X3
31	PCIe x8 interface 14	CPU2_PE1_CD	X18
32	Data communication interface	LINK_SW	X1
33	PCIe x8 interface 16	CPU2_PE2_CD	X22
34	PCIe x8 interface 21	CPU2_PE4_CD	X26
35	PCIe x8 interface 18	CPU2_PE3_CD	X23
36	PCIe x8 interface 20	CPU2_PE4_AB	X24
37	PCIe x8 interface 19	CPU2_PE4_AB	X25

9.4 Disk Backplane

The NCS6742G N4 server supports the following types of disk backplanes:

- 24 x 3.5" disk backplane

[Figure 9-7](#) shows a 24 x 3.5" disk backplane.

Figure 9-7 24 x 3.5" Disk Backplane

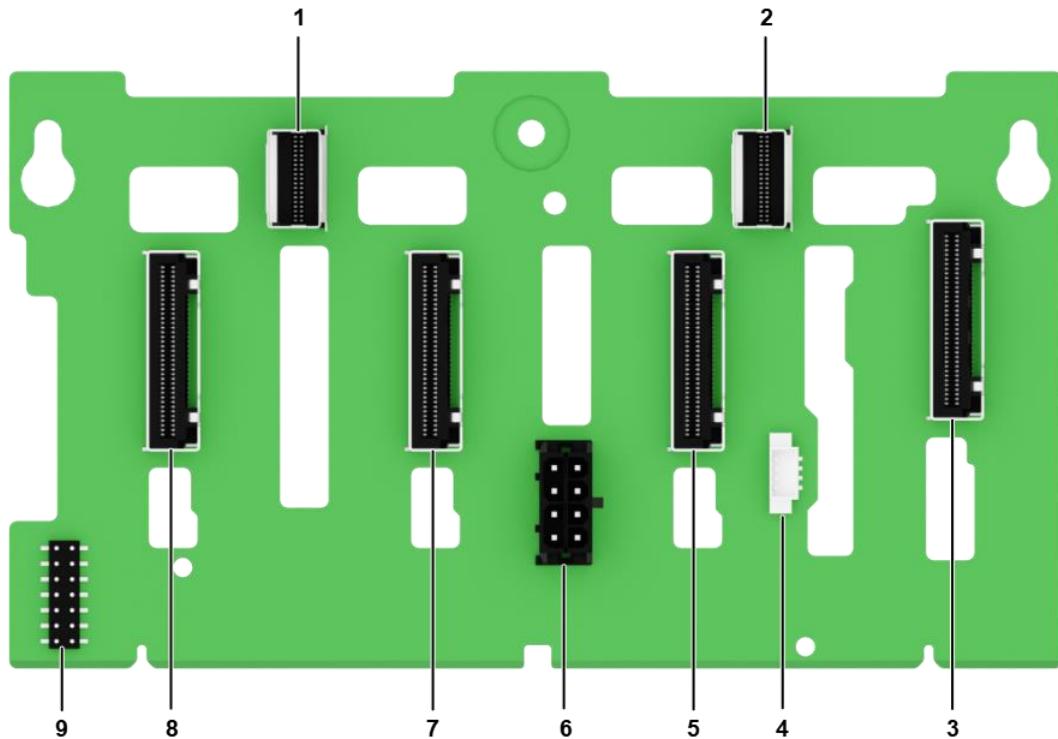

For a description of the interfaces on the 24 x 3.5" disk backplane, refer to [Table 9-7](#).

Table 9-7 Interfaces on the 24 x 3.5" Disk Backplane

No.	Interface Name	Silk Screen	Position Number
1	JTAG programming interface of the EPLD chip	EPLD_JTAG	X45
2	PCIe x8 interface 4	NVMe SLIMLINE4	X5
3	PCIe x8 interface 3	NVMe SLIMLINE3	X3
4	Power cable interface 2	PWR2	X2
5	PCIe x8 interface 2	NVMe SLIMLINE2	X31
6	PCIe x8 interface 1	NVMe SLIMLINE1	X30
7	Power cable interface 1	PWR1	X1
8	Downlink PCIe x4 interface 4	RISER HDD BP/SLIMSAS4	X40
9	Downlink PCIe x4 interface 5	HDD BP/SLIMSAS5	X36
10	Downlink PCIe x4 interface 6	HDD BP/SLIMSAS6	X37
11	Uplink PCIe x4 interface 1	SLIMSAS1	X34
12	Uplink PCIe x4 interface 2	SLIMSAS2	X35
13	Downlink PCIe x4 interface 3	RISER HDD BP/SLIMSAS3	X39
14	Downlink PCIe x4 interface 7	HDD BP/SLIMSAS7	X38

- 8 x 2.5" disk backplane

[Figure 9-8](#) shows an 8 x 2.5" disk backplane.

Figure 9-8 8 x 2.5" Disk Backplane

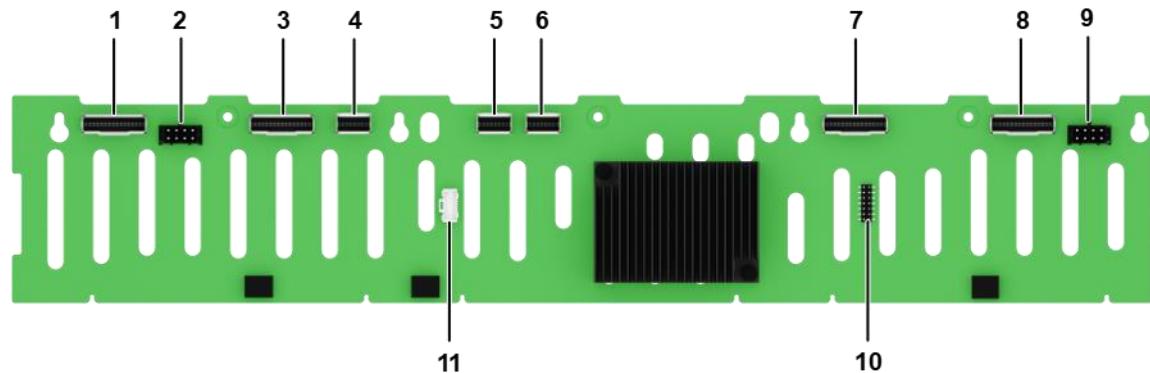

For a description of the interfaces on the 8 x 2.5" disk backplane, refer to [Table 9-8](#).

Table 9-8 Interfaces on the 8 x 2.5" Disk Backplane

No.	Interface Name	Silk Screen	Position Number
1	PCIe x4 interface	SAS_2	X15
2	PCIe x4 interface	SAS_1	X14
3	PCIe x8 interface	HSIO_1	X10
4	Out-of-band communication interface	I2C 1	X17
5	PCIe x8 interface	HSIO_2	X11
6	Power cable interface	PWR 1	X16
7	PCIe x8 interface	HSIO_3	X12
8	PCIe x8 interface	HSIO_4	X13
9	JTAG programming interface of the EPLD chip	CPLD_JTAG	X305

- 25 x 2.5" disk backplane

[Figure 9-9](#) shows a 25 x 2.5" disk backplane.

Figure 9-9 25 x 2.5" Disk Backplane

For a description of the interfaces on the 25 x 2.5" disk backplane, refer to [Table 9-9](#).

Table 9-9 Interfaces on the 25 x 2.5" Disk Backplane

No.	Interface Name	Silk Screen	Position Number
1	PCIe x8 interface	SLIMLINE_4	X34
2	Power cable interface	PWR_2	X5
3	PCIe x8 interface	SLIMLINE_3	X33
4	PCIe x4 interface	SLIMSAS_3	X37
5	PCIe x4 interface	SLIMSAS_2	X35
6	PCIe x4 interface	SLIMSAS_1	X36
7	PCIe x8 interface	SLIMLINE_2	X32
8	PCIe x8 interface	SLIMLINE_1	X31
9	Power cable interface	PWR_1	X4
10	JTAG programming interface of the EPLD chip	CPLD_JTAG	X30a11
11	Out-of-band communication interface	I2C/SPI/UART	X38

Chapter 10

Cables

Table of Contents

Power Cables	63
Straight-Through Cable	67
Serial Cable.....	68
VGA Cable	69

10.1 Power Cables

The NCS6742G N4 is configured with different power supply modules to provide [AC](#) or [DC](#) power supply. In accordance with the power distribution condition, an AC power supply module can use an AC power cable with a three-flat-pin male plug or with pre-insulated tubular terminals, and a DC power supply module can use a high-voltage DC power cable or -48 V DC power cable.

10.1.1 AC Power Cable with a Three-Flat-Pin Male Plug

Function

An AC power cable with a three-flat-pin male plug is connected to a power strip in the cabinet to supply power for the NCS6742G N4 server chassis.

External View

[Figure 10-1](#) shows an external view of an AC power cable with a three-flat-pin male plug.

[Figure 10-1 AC Power Cable with a Three-Flat-Pin Male Plug](#)

End A of the power cable is a C13 female connector, and end B is a 10 A three-flat-pin male plug. The power cable is a black AC power cable.

Connections

For the connections of an AC power cable with a three-flat-pin male plug, refer to [Table 10-1](#).

Table 10-1 Connections of an AC Power Cable with a Three-Flat-Pin Male Plug

End A	End B
Connected to the power input port of an AC PSU on the chassis.	Connected to a power strip in the cabinet.

Technical Specifications

- Rated current: 10 A.
- Internal wires: three wires, each with a cross-sectional area of 1 mm².

10.1.2 AC Power Cable with Pre-Insulated Tubular Terminals

Function

An AC power cable with pre-insulated tubular terminals is connected to the AC PDU in the equipment room to supply power for the NCS6742G N4 server chassis.

External View

[Figure 10-2](#) shows an external view of an AC power cable with pre-insulated tubular terminals.

Figure 10-2 AC Power Cable with Pre-Insulated Tubular Terminals

End A of the power cable is a C13 female connector, and end B consists of pre-insulated tubular terminals. The power cable is a black AC power cable.

For the correspondence between the wires and pins of an AC power cable with pre-insulated tubular terminals, refer to [Table 10-2](#).

Table 10-2 Correspondence Between Wires and Pins of an AC Power Cable with Pre-Insulated Tubular Terminals

Pin of End A	Wire Color	Pin of End B
L	Brown	B1
N	Blue	B2
E	Yellow-green	B3

Connections

For the connections of an AC power cable with pre-insulated tubular terminals, refer to [Table 10-3](#).

Table 10-3 Connections of an AC Power Cable with Pre-Insulated Tubular Terminals

End A	End B
Connected to the power input port of an AC PSU on the chassis.	Connected to the AC PDU .

Technical Specifications

- Rated current: 10 A.
- Internal wires: three wires, each with a cross-sectional area of 1 mm².

10.1.3 HVDC Power Cable

Function

An [HVDC](#) power cable is connected to the [DC PDU](#) in the equipment room to supply power for the NCS6742G N4 server chassis.

External View

[Figure 10-3](#) shows an external view of an HVDC power cable.

Figure 10-3 HVDC Power Cable

End A of the power cable is an HVDC female connector, and end B consists of pre-insulated tubular terminals. The power cable is a black DC power cable.

For the correspondence between the wires and the pins of the HVDC power cable, refer to [Table 10-4](#).

Table 10-4 Correspondence Between the Wires and Pins of an HVDC Power Cable

Pin of End A	Wire Color	Pin of End B
L (+)	Brown	B1
N (-)	Blue	B2
FG	Yellow-green	B3

Connections

For the connections of an HVDC power cable, refer to [Table 10-5](#).

Table 10-5 Connections of an HVDC Power Cable

End A	End B
Connected to the power input port of a DC PSU of the chassis.	Connected to the DC PDU in the equipment room.

Technical Specifications

- Rated current: 10 A.
- Internal wires: three wires, each with a cross-sectional area of 1 mm².

10.1.4 -48 V DC Power Cable

Function

A -48 V DC power cable is connected to the DC PDU in the equipment room to supply power for the NCS6742G N4 server chassis.

External View

[Figure 10-4](#) shows an external view of a -48V DC power cable.

Figure 10-4 -48V DC Power Cable

End A of the power cable is a dedicated -48 V DC power plug, and end B consists of pre-insulated terminals with copper lugs. The power cable has three wires: one red wire, one black wire, and one yellow-green wire.

For the correspondence between the wires and pins of the -48 V DC power cable, refer to [Table 10-6](#).

Table 10-6 Correspondence Between the Wires and Pins of a -48V DC Power Cable

Pin of End A	Wire Color	Pin of End B
1	Yellow-green	B1 (label: PE)
2	Black	B2 (label: -48 V)
3	Red	B3 (label: -48 VRTN)

Connections

For the connections of a –48 V DC power cable, refer to [Table 10-7](#).

Table 10-7 –48 V DC Power Cable Connections

End A	End B
Connected to the power input port of a DC PSU of the chassis.	Connected to the DC PDU in the equipment room.

Technical Specifications

Rated current: 26 A.

10.2 Straight-Through Cable

Function

A straight-through cable is used to connect two devices or terminals for data transmission.

External View

[Figure 10-5](#) shows an external view of a straight-through cable.

Figure 10-5 Straight-Through Cable

End A and end B of a shielded straight-through cable are shielded 8P8C crimped plugs. End A and end B of a non-shielded straight-through cable are non-shielded 8P8C crimped plugs.

The main differences between shielded and unshielded straight-through cables lie in the structures, resistance to interference, and application scenarios.

- **Shielded straight-through cable:** This type of cable contains a metal shielding layer to reduce electromagnetic interference and RF interference, thus increasing signal quality and transmission distance. Shielded straight-through cables are typically used in environments with high data transmission requirements, such as data centers or industrial automation settings.
- **Unshielded straight-through cable:** This type of cable lacks an additional metal shielding layer, resulting in lower resistance to interference. Due to its lower cost and ease of installation, unshielded straight-through cables are widely used in home and office environments.

Connections

The two ends of a straight-through cable are connected to the network interfaces (RJ45 interfaces) of the devices or terminals that require data transmission.

Technical Specifications

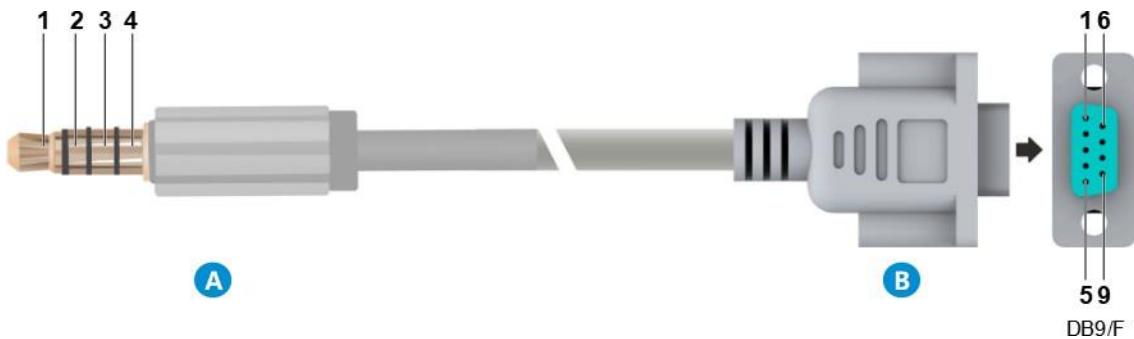
A shielded straight-through cable is an eight-core 100-ohm Cat5e shielded cable. An unshielded straight-through cable is an eight-core 100-ohm Cat5e unshielded cable. [Table 10-8](#) describes the correspondence between cores.

Table 10-8 Correspondence Between Wires and Pins of a Straight-Through Cable

End A	Color	End B
1	White-orange	1
2	Orange	2
3	White-green	3
4	Blue	4
5	White-blue	5
6	Green	6
7	White-brown	7
8	Brown	8

Note

The metal shielding layer of a shielded cable must be securely connected to the metal shielding enclosures of connectors at both ends.


10.3 Serial Cable

Function

A serial cable connects the serial port on the NCS6742G N4 chassis to the serial port of a debugging [PC](#).

External Overview

[Figure 10-6](#) shows an external view of a serial cable.

Figure 10-6 Serial Cable

End A of a serial cable is a 3.5 mm audio plug, and end B is a 9-pin D-shape molded plug. Both end A and end B are numbered as pin numbers.

Connections

For a description of the connections of a serial cable, refer to [Table 10-9](#).

Table 10-9 Serial Cable Connections

End A	End B
Connected to the 3.5 mm audio port of the server.	Connected to the RS-232 debugging serial port (DB9) of a debugging PC.

Technical Specifications

For the correspondence between the pins of the connectors at both ends of the serial cable, refer to [Table 10-10](#).

Table 10-10 Correspondence Between Pins on Both Ends of the Serial Cable

Pin at End A	Pin at End B
1	2
2	3
3	5
4	

10.4 VGA Cable

Function

A [VGA](#) cable is used to connect the NCS6742G N4 and a media display.

External Overview

[Figure 10-7](#) shows the external overview of a VGA cable.

Figure 10-7 VGA Cable

A VGA cable is a beige UL2919 cable with magnetic rings, and uses HD-SUB plugs at both ends.

Connections

For the connections of a VGA cable, refer to [Table 10-11](#).

Table 10-11 VGA Cable Connections

End A	End B
Connected to the VGA interface on the chassis.	Connected to the VGA interface of a media display.

Technical Specifications

A VGA cable is a horizontal pair-twisted cable. For the correspondence between the wires and pins of a VGA cable, refer to [Table 10-12](#).

Table 10-12 Correspondence Between the Wires and Cores of a VGA Cable

End A	Color	End B
1	Core of the red cord	1
2	Core of the gray cord	2
3	Core of the blue cord	3
4	(Blank)	4
5	External shielded wire	5
6	Core of the red cord	6
7	Core of the gray cord	7
8	Core of the blue cord	8
9	(Blank)	9
10	Shielded wire for the white cord	10
11	Shielded wire for the black cord	11
12	Black wire	12
13	Shielded wire for the white cord	13
14	Shielded wire for the black cord	14

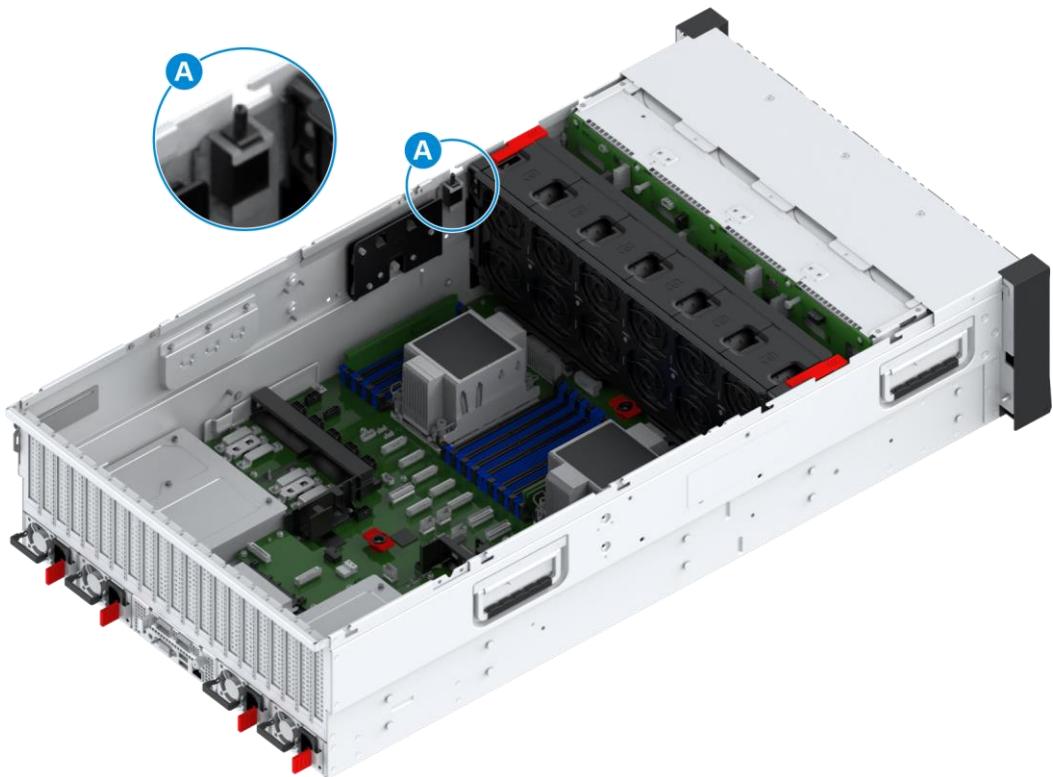
End A	Color	End B
15	Brown wire	15

The external shielded wire for the entire VGA cable, shielded wire for the white cord, and shielded wire for the black cord are connected and grounded together through the VGA plug shell.

Chapter 11

Anti-Intrusion Sensor

The functions of the anti-intrusion sensor are as follows:


- Triggers an alarm to indicate that the cover of the server is not installed or is not installed properly.
- Ensures good heat dissipation of related components and proper operation of the server if the cover of the server is not installed or is not installed properly.

When the server is in power-on status, once the anti-intrusion sensor detects that the cover is open, it triggers the following actions:

- The [BMC](#) reports a system intrusion alarm, indicating that the cover of the server is not installed or is not installed properly.
- The fans of the server operate at the maximum speed to ensure good heat dissipation.

[Figure 11-1](#) shows the position of the anti-intrusion sensor in the NCS6742G N4 server.

[Figure 11-1 Position of the Anti-Intrusion Sensor](#)

Glossary

AC

- Alternating Current

ADDDC

- Adaptive Double Device Data Correction

BIOS

- Basic Input/Output System

BMC

- Baseboard Management Controller

CAS

- Column Address Strobe

CPU

- Central Processing Unit

CRC

- Cyclic Redundancy Check

DC

- Direct Current

DDR

- Double Data Rate

DIMM

- Dual Inline Memory Module

DRAM

- Dynamic Random Access Memory

ECC

- Error Check and Correction

ECS

- Error Check and Scrub

EPLD

- Erasable Programmable Logic Device

GPU

- Graphics Processing Unit

HBM

- High Bandwidth Memory

HVDC

- High-Voltage Direct Current

I/O

- Input/Output

JTAG

- Joint Test Action Group

NIC

- Network Interface Card

NVMe

- Non-Volatile Memory Express

OCP

- Open Computer Project

OS

- Operating System

PC

- Personal Computer

PCH

- Platform Controller Hub

PCIe

- Peripheral Component Interconnect Express

PCLS

- Partial Cache Line Sparing

PDU

- Power Distribution Unit

PPR

- Post-Package Repair

RAID

- Redundant Array of Independent Disks

RDIMM

- Registered Dual Inline Memory Module

RS-232

- Recommended Standard 232

SAS

- Serial Attached SCSI

SATA

- Serial ATA

SDDC

- Single Device Data Correction

SPD

- Serial Presence Detect

TPM

- Trusted Platform Module

UID

- Unit Identification Light

UPI

- Ultra Path Interconnect

USB

- Universal Serial Bus

VGA

- Video Graphic Adapter